Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100184267> ?p ?o ?g. }
- W3100184267 abstract "Forest ecosystems cover about 30% of the earth’s land surface and provide a significant contribution to the terrestrial biodiversity, biomass and carbon storage, as well as timber production. Quantitative timely information about the forest canopy cover and characteristics is important for ecologists and decision-makers to assess the influence of climate change and expanding human activities on forest ecosystems. However, traditional field sampling of plant traits is often laborious and limited to small areas. Remote sensing, because of its repetitiveness, cost-effectiveness, and non-destructive characterization of land surfaces, has been recognized as a prevalent technology and a practical mean for monitoring forest canopy characteristics over a large scale. Among many characteristics, leaf area index (LAI) is a widely used biophysical parameter to quantify forest health and growth. Thus, accurate estimating LAI and mapping its spatial distribution is crucial for forest management and many ecological studies. Among existing remote sensing-based methods, machine learning algorithms, in particular, kernel-based machine learning methods, such as Gaussian processes regression (GPR), have shown to be promising alternatives to conventional empirical methods for retrieving vegetation parameters. However, the performance of GPR in predicting forest biophysical parameters has hardly been examined in the literature. The main objective of this study was to evaluate the potential of GPR to estimate forest LAI using airborne hyperspectral data. To achieve this, field measurements of LAI were collected in the Bavarian Forest National Park (BFNP), Germany, concurrent with the acquisition of the Fenix airborne hyperspectral images (400-2500 nm) in July 2017. The performance of GPR was further compared with three commonly used empirical methods (i.e. narrowband vegetation indices (VIs), partial least square regression (PLSR), and artificial neural network (ANN)). The cross-validated coefficient of determination (R2 CV) and root mean square error (RMSEcv) between the retrieved and field-measured LAI were used to examine the accuracy of the respective methods. The results showed that using the entire spectral data (400-2500 nm), GPR yielded the most accurate LAI estimation (R2 CV = 0.67, RMSEcv = 0.53 m2 m-2) compared to the best performing narrowband vegetation indices SAVI2 (R2 CV = 0.54, RMSEcv = 0.63 m2 m-2), PLSR (R2 CV = 0.74, RMSEcv = 0.73 m2 m-2) and ANN (R2 CV = 0.68, RMSE = 0.54 m2 m-2). Consequently, when a spectral subset obtained from the analysis of VIs was used as input, the predictive accuracies were generally improved (GPR RMSEcv = 0.52 m2 m-2; ANN RMSEcv = 0.55 m2 m-2; PLSR RMSEcv = 0.69 m2 m-2), indicating that extracting the most useful information from vast hyperspectral bands is crucial for improving model performance. In general, there was an agreement between measured and estimated LAI using different approaches (p > 0.05). The generated LAI map for BFNP using GPR and the spectral subset endorsed the LAI spatial distribution across the dominant forest classes (e.g. deciduous stands were generally associated with higher LAI values). The accompanying LAI uncertainty map generated by GPR shows that higher uncertainties were observed mainly in the regions with low LAI values (low vegetation cover) and forest areas which were not well represented in the collected sample plots. The results of this study demonstrated the potential utility of GPR for estimating LAI in forest stands using airborne hyperspectral data. Owing to its capability to generate accurate predictions and associated uncertainty estimates, GPR is evaluated as a promising candidate for operational retrieval applications of vegetation traits. The generated trait maps can offer spatially explicit and continuous information of vegetation to effectively support sustainable forest management and resource decision-making." @default.
- W3100184267 created "2020-11-23" @default.
- W3100184267 creator A5058212374 @default.
- W3100184267 date "2020-01-01" @default.
- W3100184267 modified "2023-09-23" @default.
- W3100184267 title "Airborne hyperspectral data for estimation and mapping of forest leaf area index" @default.
- W3100184267 cites W1554944419 @default.
- W3100184267 cites W1683383071 @default.
- W3100184267 cites W196321102 @default.
- W3100184267 cites W1966123034 @default.
- W3100184267 cites W1972793421 @default.
- W3100184267 cites W1974416151 @default.
- W3100184267 cites W1984806043 @default.
- W3100184267 cites W1990255627 @default.
- W3100184267 cites W1998025025 @default.
- W3100184267 cites W1999606853 @default.
- W3100184267 cites W2007342648 @default.
- W3100184267 cites W2009283886 @default.
- W3100184267 cites W2020677872 @default.
- W3100184267 cites W2024935444 @default.
- W3100184267 cites W2033266074 @default.
- W3100184267 cites W2048773673 @default.
- W3100184267 cites W2056352756 @default.
- W3100184267 cites W2058947207 @default.
- W3100184267 cites W2062594147 @default.
- W3100184267 cites W2070564279 @default.
- W3100184267 cites W2075220970 @default.
- W3100184267 cites W2081663460 @default.
- W3100184267 cites W2091493105 @default.
- W3100184267 cites W2094125036 @default.
- W3100184267 cites W2094420085 @default.
- W3100184267 cites W2109606373 @default.
- W3100184267 cites W2114535331 @default.
- W3100184267 cites W2118791227 @default.
- W3100184267 cites W2126142391 @default.
- W3100184267 cites W2130908006 @default.
- W3100184267 cites W2131126673 @default.
- W3100184267 cites W2137570937 @default.
- W3100184267 cites W2139584183 @default.
- W3100184267 cites W2139925058 @default.
- W3100184267 cites W2145539952 @default.
- W3100184267 cites W2151880387 @default.
- W3100184267 cites W2156297475 @default.
- W3100184267 cites W2158863190 @default.
- W3100184267 cites W2165037481 @default.
- W3100184267 cites W2167248655 @default.
- W3100184267 cites W2167881994 @default.
- W3100184267 cites W2181815321 @default.
- W3100184267 cites W2214925434 @default.
- W3100184267 cites W2409846270 @default.
- W3100184267 cites W248389711 @default.
- W3100184267 cites W2498515979 @default.
- W3100184267 cites W2543433405 @default.
- W3100184267 cites W2561415527 @default.
- W3100184267 cites W2585058749 @default.
- W3100184267 cites W25966859 @default.
- W3100184267 cites W2600798029 @default.
- W3100184267 cites W2755091472 @default.
- W3100184267 cites W2793960079 @default.
- W3100184267 cites W2902505403 @default.
- W3100184267 cites W2972801870 @default.
- W3100184267 cites W633320881 @default.
- W3100184267 cites W75134264 @default.
- W3100184267 hasPublicationYear "2020" @default.
- W3100184267 type Work @default.
- W3100184267 sameAs 3100184267 @default.
- W3100184267 citedByCount "0" @default.
- W3100184267 crossrefType "dissertation" @default.
- W3100184267 hasAuthorship W3100184267A5058212374 @default.
- W3100184267 hasConcept C101000010 @default.
- W3100184267 hasConcept C110872660 @default.
- W3100184267 hasConcept C142724271 @default.
- W3100184267 hasConcept C159078339 @default.
- W3100184267 hasConcept C166957645 @default.
- W3100184267 hasConcept C18903297 @default.
- W3100184267 hasConcept C205649164 @default.
- W3100184267 hasConcept C25989453 @default.
- W3100184267 hasConcept C2776133958 @default.
- W3100184267 hasConcept C2780648208 @default.
- W3100184267 hasConcept C39432304 @default.
- W3100184267 hasConcept C4792198 @default.
- W3100184267 hasConcept C62649853 @default.
- W3100184267 hasConcept C71924100 @default.
- W3100184267 hasConcept C73935091 @default.
- W3100184267 hasConcept C86803240 @default.
- W3100184267 hasConceptScore W3100184267C101000010 @default.
- W3100184267 hasConceptScore W3100184267C110872660 @default.
- W3100184267 hasConceptScore W3100184267C142724271 @default.
- W3100184267 hasConceptScore W3100184267C159078339 @default.
- W3100184267 hasConceptScore W3100184267C166957645 @default.
- W3100184267 hasConceptScore W3100184267C18903297 @default.
- W3100184267 hasConceptScore W3100184267C205649164 @default.
- W3100184267 hasConceptScore W3100184267C25989453 @default.
- W3100184267 hasConceptScore W3100184267C2776133958 @default.
- W3100184267 hasConceptScore W3100184267C2780648208 @default.
- W3100184267 hasConceptScore W3100184267C39432304 @default.
- W3100184267 hasConceptScore W3100184267C4792198 @default.
- W3100184267 hasConceptScore W3100184267C62649853 @default.
- W3100184267 hasConceptScore W3100184267C71924100 @default.
- W3100184267 hasConceptScore W3100184267C73935091 @default.