Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100196865> ?p ?o ?g. }
- W3100196865 abstract "We generalize the well-known mixtures of Gaussians approach to density estimation and the accompanying Expectation–Maximization technique for finding the maximum likelihood parameters of the mixture to the case where each data point carries an individual d-dimensional uncertainty covariance and has unique missing data properties. This algorithm reconstructs the error-deconvolved or “underlying” distribution function common to all samples, even when the individual data points are samples from different distributions, obtained by convolving the underlying distribution with the heteroskedastic uncertainty distribution of the data point and projecting out the missing data directions. We show how this basic algorithm can be extended with conjugate priors on all of the model parameters and a “split-and-merge” procedure designed to avoid local maxima of the likelihood. We demonstrate the full method by applying it to the problem of inferring the three-dimensional velocity distribution of stars near the Sun from noisy two-dimensional, transverse velocity measurements from the Hipparcos satellite." @default.
- W3100196865 created "2020-11-23" @default.
- W3100196865 creator A5003010184 @default.
- W3100196865 creator A5025226631 @default.
- W3100196865 creator A5090854438 @default.
- W3100196865 date "2011-06-01" @default.
- W3100196865 modified "2023-10-16" @default.
- W3100196865 title "Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations" @default.
- W3100196865 cites W130037070 @default.
- W3100196865 cites W1670318221 @default.
- W3100196865 cites W1765928510 @default.
- W3100196865 cites W1866403196 @default.
- W3100196865 cites W1966386448 @default.
- W3100196865 cites W1969946615 @default.
- W3100196865 cites W1984913123 @default.
- W3100196865 cites W1995182310 @default.
- W3100196865 cites W2029304706 @default.
- W3100196865 cites W2035756456 @default.
- W3100196865 cites W2037024160 @default.
- W3100196865 cites W2038885294 @default.
- W3100196865 cites W2049633694 @default.
- W3100196865 cites W2052953139 @default.
- W3100196865 cites W2053742104 @default.
- W3100196865 cites W2054658115 @default.
- W3100196865 cites W2058791753 @default.
- W3100196865 cites W2069973579 @default.
- W3100196865 cites W2100736366 @default.
- W3100196865 cites W2110381504 @default.
- W3100196865 cites W2112081648 @default.
- W3100196865 cites W2133725650 @default.
- W3100196865 cites W2141169613 @default.
- W3100196865 cites W2141182216 @default.
- W3100196865 cites W2168175751 @default.
- W3100196865 cites W2412637781 @default.
- W3100196865 cites W3017026857 @default.
- W3100196865 cites W3098324537 @default.
- W3100196865 cites W3101008144 @default.
- W3100196865 cites W3102771269 @default.
- W3100196865 cites W3103673145 @default.
- W3100196865 cites W3124275756 @default.
- W3100196865 cites W4233014035 @default.
- W3100196865 cites W4291007614 @default.
- W3100196865 cites W4292385952 @default.
- W3100196865 cites W4292508430 @default.
- W3100196865 cites W4296295595 @default.
- W3100196865 cites W4302338619 @default.
- W3100196865 doi "https://doi.org/10.1214/10-aoas439" @default.
- W3100196865 hasPublicationYear "2011" @default.
- W3100196865 type Work @default.
- W3100196865 sameAs 3100196865 @default.
- W3100196865 citedByCount "134" @default.
- W3100196865 countsByYear W31001968652012 @default.
- W3100196865 countsByYear W31001968652013 @default.
- W3100196865 countsByYear W31001968652014 @default.
- W3100196865 countsByYear W31001968652015 @default.
- W3100196865 countsByYear W31001968652016 @default.
- W3100196865 countsByYear W31001968652017 @default.
- W3100196865 countsByYear W31001968652018 @default.
- W3100196865 countsByYear W31001968652019 @default.
- W3100196865 countsByYear W31001968652020 @default.
- W3100196865 countsByYear W31001968652021 @default.
- W3100196865 countsByYear W31001968652022 @default.
- W3100196865 countsByYear W31001968652023 @default.
- W3100196865 crossrefType "journal-article" @default.
- W3100196865 hasAuthorship W3100196865A5003010184 @default.
- W3100196865 hasAuthorship W3100196865A5025226631 @default.
- W3100196865 hasAuthorship W3100196865A5090854438 @default.
- W3100196865 hasBestOaLocation W31001968651 @default.
- W3100196865 hasConcept C101104100 @default.
- W3100196865 hasConcept C105795698 @default.
- W3100196865 hasConcept C107673813 @default.
- W3100196865 hasConcept C11413529 @default.
- W3100196865 hasConcept C121332964 @default.
- W3100196865 hasConcept C121864883 @default.
- W3100196865 hasConcept C160234255 @default.
- W3100196865 hasConcept C167928553 @default.
- W3100196865 hasConcept C174576160 @default.
- W3100196865 hasConcept C177769412 @default.
- W3100196865 hasConcept C178650346 @default.
- W3100196865 hasConcept C182081679 @default.
- W3100196865 hasConcept C26004113 @default.
- W3100196865 hasConcept C33923547 @default.
- W3100196865 hasConcept C37903108 @default.
- W3100196865 hasConcept C41008148 @default.
- W3100196865 hasConcept C49781872 @default.
- W3100196865 hasConcept C83247935 @default.
- W3100196865 hasConcept C89106044 @default.
- W3100196865 hasConcept C9357733 @default.
- W3100196865 hasConceptScore W3100196865C101104100 @default.
- W3100196865 hasConceptScore W3100196865C105795698 @default.
- W3100196865 hasConceptScore W3100196865C107673813 @default.
- W3100196865 hasConceptScore W3100196865C11413529 @default.
- W3100196865 hasConceptScore W3100196865C121332964 @default.
- W3100196865 hasConceptScore W3100196865C121864883 @default.
- W3100196865 hasConceptScore W3100196865C160234255 @default.
- W3100196865 hasConceptScore W3100196865C167928553 @default.
- W3100196865 hasConceptScore W3100196865C174576160 @default.
- W3100196865 hasConceptScore W3100196865C177769412 @default.
- W3100196865 hasConceptScore W3100196865C178650346 @default.
- W3100196865 hasConceptScore W3100196865C182081679 @default.