Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100200625> ?p ?o ?g. }
- W3100200625 abstract "The ability to witness nonlocal correlations lies at the core of foundational aspects of quantum mechanics and its application in the processing of information. Commonly, this is achieved via the violation of Bell inequalities. Unfortunately, however, their systematic derivation quickly becomes unfeasible as the scenario of interest grows in complexity. To cope with that, here, we propose a machine learning approach for the detection and quantification of nonlocality. It consists of an ensemble of multilayer perceptrons blended with genetic algorithms achieving a high performance in a number of relevant Bell scenarios. As we show, not only can the machine learn to quantify nonlocality, but discover new kinds of nonlocal correlations inaccessible with other current methods as well. We also apply our framework to distinguish between classical, quantum, and even postquantum correlations. Our results offer a novel method and a proof-of-principle for the relevance of machine learning for understanding nonlocality." @default.
- W3100200625 created "2020-11-23" @default.
- W3100200625 creator A5071583024 @default.
- W3100200625 creator A5074284731 @default.
- W3100200625 creator A5083411173 @default.
- W3100200625 date "2019-05-22" @default.
- W3100200625 modified "2023-10-18" @default.
- W3100200625 title "Machine Learning Nonlocal Correlations" @default.
- W3100200625 cites W1500133966 @default.
- W3100200625 cites W1696442146 @default.
- W3100200625 cites W1758846674 @default.
- W3100200625 cites W1980575345 @default.
- W3100200625 cites W1986293140 @default.
- W3100200625 cites W1998660432 @default.
- W3100200625 cites W1999854952 @default.
- W3100200625 cites W2000157180 @default.
- W3100200625 cites W2012287288 @default.
- W3100200625 cites W2015914132 @default.
- W3100200625 cites W2028815089 @default.
- W3100200625 cites W2037181643 @default.
- W3100200625 cites W2048129224 @default.
- W3100200625 cites W2051051926 @default.
- W3100200625 cites W2058302064 @default.
- W3100200625 cites W2064263748 @default.
- W3100200625 cites W2067204178 @default.
- W3100200625 cites W2076063813 @default.
- W3100200625 cites W2077801543 @default.
- W3100200625 cites W2091636818 @default.
- W3100200625 cites W2091785906 @default.
- W3100200625 cites W2132764286 @default.
- W3100200625 cites W2135830616 @default.
- W3100200625 cites W2160819312 @default.
- W3100200625 cites W2266739300 @default.
- W3100200625 cites W2337082154 @default.
- W3100200625 cites W2419175238 @default.
- W3100200625 cites W2531741860 @default.
- W3100200625 cites W2547937523 @default.
- W3100200625 cites W2608528310 @default.
- W3100200625 cites W2613056234 @default.
- W3100200625 cites W2716913019 @default.
- W3100200625 cites W2740116770 @default.
- W3100200625 cites W2756313797 @default.
- W3100200625 cites W2762508157 @default.
- W3100200625 cites W2790590803 @default.
- W3100200625 cites W2893362201 @default.
- W3100200625 cites W3037737784 @default.
- W3100200625 cites W3099013266 @default.
- W3100200625 cites W3100981770 @default.
- W3100200625 cites W3104239185 @default.
- W3100200625 cites W3104481216 @default.
- W3100200625 cites W4211058570 @default.
- W3100200625 doi "https://doi.org/10.1103/physrevlett.122.200401" @default.
- W3100200625 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31172755" @default.
- W3100200625 hasPublicationYear "2019" @default.
- W3100200625 type Work @default.
- W3100200625 sameAs 3100200625 @default.
- W3100200625 citedByCount "45" @default.
- W3100200625 countsByYear W31002006252019 @default.
- W3100200625 countsByYear W31002006252020 @default.
- W3100200625 countsByYear W31002006252021 @default.
- W3100200625 countsByYear W31002006252022 @default.
- W3100200625 countsByYear W31002006252023 @default.
- W3100200625 crossrefType "journal-article" @default.
- W3100200625 hasAuthorship W3100200625A5071583024 @default.
- W3100200625 hasAuthorship W3100200625A5074284731 @default.
- W3100200625 hasAuthorship W3100200625A5083411173 @default.
- W3100200625 hasBestOaLocation W31002006252 @default.
- W3100200625 hasConcept C119857082 @default.
- W3100200625 hasConcept C121040770 @default.
- W3100200625 hasConcept C121332964 @default.
- W3100200625 hasConcept C138622882 @default.
- W3100200625 hasConcept C154945302 @default.
- W3100200625 hasConcept C158154518 @default.
- W3100200625 hasConcept C17744445 @default.
- W3100200625 hasConcept C199539241 @default.
- W3100200625 hasConcept C41008148 @default.
- W3100200625 hasConcept C50644808 @default.
- W3100200625 hasConcept C60908668 @default.
- W3100200625 hasConcept C62520636 @default.
- W3100200625 hasConcept C80444323 @default.
- W3100200625 hasConcept C84114770 @default.
- W3100200625 hasConceptScore W3100200625C119857082 @default.
- W3100200625 hasConceptScore W3100200625C121040770 @default.
- W3100200625 hasConceptScore W3100200625C121332964 @default.
- W3100200625 hasConceptScore W3100200625C138622882 @default.
- W3100200625 hasConceptScore W3100200625C154945302 @default.
- W3100200625 hasConceptScore W3100200625C158154518 @default.
- W3100200625 hasConceptScore W3100200625C17744445 @default.
- W3100200625 hasConceptScore W3100200625C199539241 @default.
- W3100200625 hasConceptScore W3100200625C41008148 @default.
- W3100200625 hasConceptScore W3100200625C50644808 @default.
- W3100200625 hasConceptScore W3100200625C60908668 @default.
- W3100200625 hasConceptScore W3100200625C62520636 @default.
- W3100200625 hasConceptScore W3100200625C80444323 @default.
- W3100200625 hasConceptScore W3100200625C84114770 @default.
- W3100200625 hasFunder F4320306193 @default.
- W3100200625 hasFunder F4320322025 @default.
- W3100200625 hasFunder F4320327890 @default.
- W3100200625 hasIssue "20" @default.
- W3100200625 hasLocation W31002006251 @default.