Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100208521> ?p ?o ?g. }
- W3100208521 endingPage "1232" @default.
- W3100208521 startingPage "1199" @default.
- W3100208521 abstract "In this paper, we study the Kurdyka–Łojasiewicz (KL) exponent, an important quantity for analyzing the convergence rate of first-order methods. Specifically, we develop various calculus rules to deduce the KL exponent of new (possibly nonconvex and nonsmooth) functions formed from functions with known KL exponents. In addition, we show that the well-studied Luo–Tseng error bound together with a mild assumption on the separation of stationary values implies that the KL exponent is $$frac{1}{2}$$ . The Luo–Tseng error bound is known to hold for a large class of concrete structured optimization problems, and thus we deduce the KL exponent of a large class of functions whose exponents were previously unknown. Building upon this and the calculus rules, we are then able to show that for many convex or nonconvex optimization models for applications such as sparse recovery, their objective function’s KL exponent is $$frac{1}{2}$$ . This includes the least squares problem with smoothly clipped absolute deviation regularization or minimax concave penalty regularization and the logistic regression problem with $$ell _1$$ regularization. Since many existing local convergence rate analysis for first-order methods in the nonconvex scenario relies on the KL exponent, our results enable us to obtain explicit convergence rate for various first-order methods when they are applied to a large variety of practical optimization models. Finally, we further illustrate how our results can be applied to establishing local linear convergence of the proximal gradient algorithm and the inertial proximal algorithm with constant step sizes for some specific models that arise in sparse recovery." @default.
- W3100208521 created "2020-11-23" @default.
- W3100208521 creator A5025579166 @default.
- W3100208521 creator A5065214298 @default.
- W3100208521 date "2017-08-10" @default.
- W3100208521 modified "2023-10-10" @default.
- W3100208521 title "Calculus of the Exponent of Kurdyka–Łojasiewicz Inequality and Its Applications to Linear Convergence of First-Order Methods" @default.
- W3100208521 cites W1583089965 @default.
- W3100208521 cites W182881619 @default.
- W3100208521 cites W1965125844 @default.
- W3100208521 cites W1967138577 @default.
- W3100208521 cites W1968154520 @default.
- W3100208521 cites W1975017829 @default.
- W3100208521 cites W1980454827 @default.
- W3100208521 cites W2000462146 @default.
- W3100208521 cites W2004160833 @default.
- W3100208521 cites W2033511209 @default.
- W3100208521 cites W2035100079 @default.
- W3100208521 cites W2039050532 @default.
- W3100208521 cites W2045782147 @default.
- W3100208521 cites W2080744942 @default.
- W3100208521 cites W2090084467 @default.
- W3100208521 cites W2092607002 @default.
- W3100208521 cites W2098258381 @default.
- W3100208521 cites W2101868363 @default.
- W3100208521 cites W2129732816 @default.
- W3100208521 cites W2130025383 @default.
- W3100208521 cites W2138019504 @default.
- W3100208521 cites W2166388529 @default.
- W3100208521 cites W2169273485 @default.
- W3100208521 cites W2273602044 @default.
- W3100208521 cites W2295652899 @default.
- W3100208521 cites W2962826994 @default.
- W3100208521 cites W2963254198 @default.
- W3100208521 cites W3098950028 @default.
- W3100208521 cites W3105393233 @default.
- W3100208521 cites W3157341860 @default.
- W3100208521 cites W322738573 @default.
- W3100208521 cites W4231183558 @default.
- W3100208521 cites W4249513058 @default.
- W3100208521 cites W4249667877 @default.
- W3100208521 doi "https://doi.org/10.1007/s10208-017-9366-8" @default.
- W3100208521 hasPublicationYear "2017" @default.
- W3100208521 type Work @default.
- W3100208521 sameAs 3100208521 @default.
- W3100208521 citedByCount "159" @default.
- W3100208521 countsByYear W31002085212016 @default.
- W3100208521 countsByYear W31002085212017 @default.
- W3100208521 countsByYear W31002085212018 @default.
- W3100208521 countsByYear W31002085212019 @default.
- W3100208521 countsByYear W31002085212020 @default.
- W3100208521 countsByYear W31002085212021 @default.
- W3100208521 countsByYear W31002085212022 @default.
- W3100208521 countsByYear W31002085212023 @default.
- W3100208521 crossrefType "journal-article" @default.
- W3100208521 hasAuthorship W3100208521A5025579166 @default.
- W3100208521 hasAuthorship W3100208521A5065214298 @default.
- W3100208521 hasBestOaLocation W31002085212 @default.
- W3100208521 hasConcept C126255220 @default.
- W3100208521 hasConcept C127162648 @default.
- W3100208521 hasConcept C134306372 @default.
- W3100208521 hasConcept C138885662 @default.
- W3100208521 hasConcept C149728462 @default.
- W3100208521 hasConcept C154945302 @default.
- W3100208521 hasConcept C2776135515 @default.
- W3100208521 hasConcept C2780388253 @default.
- W3100208521 hasConcept C28826006 @default.
- W3100208521 hasConcept C31258907 @default.
- W3100208521 hasConcept C33923547 @default.
- W3100208521 hasConcept C41008148 @default.
- W3100208521 hasConcept C41895202 @default.
- W3100208521 hasConcept C57869625 @default.
- W3100208521 hasConcept C77553402 @default.
- W3100208521 hasConceptScore W3100208521C126255220 @default.
- W3100208521 hasConceptScore W3100208521C127162648 @default.
- W3100208521 hasConceptScore W3100208521C134306372 @default.
- W3100208521 hasConceptScore W3100208521C138885662 @default.
- W3100208521 hasConceptScore W3100208521C149728462 @default.
- W3100208521 hasConceptScore W3100208521C154945302 @default.
- W3100208521 hasConceptScore W3100208521C2776135515 @default.
- W3100208521 hasConceptScore W3100208521C2780388253 @default.
- W3100208521 hasConceptScore W3100208521C28826006 @default.
- W3100208521 hasConceptScore W3100208521C31258907 @default.
- W3100208521 hasConceptScore W3100208521C33923547 @default.
- W3100208521 hasConceptScore W3100208521C41008148 @default.
- W3100208521 hasConceptScore W3100208521C41895202 @default.
- W3100208521 hasConceptScore W3100208521C57869625 @default.
- W3100208521 hasConceptScore W3100208521C77553402 @default.
- W3100208521 hasIssue "5" @default.
- W3100208521 hasLocation W31002085211 @default.
- W3100208521 hasLocation W31002085212 @default.
- W3100208521 hasLocation W31002085213 @default.
- W3100208521 hasOpenAccess W3100208521 @default.
- W3100208521 hasPrimaryLocation W31002085211 @default.
- W3100208521 hasRelatedWork W1602298929 @default.
- W3100208521 hasRelatedWork W2023578832 @default.
- W3100208521 hasRelatedWork W2046493556 @default.
- W3100208521 hasRelatedWork W2072944004 @default.