Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100220428> ?p ?o ?g. }
- W3100220428 endingPage "400" @default.
- W3100220428 startingPage "385" @default.
- W3100220428 abstract "We develop an unsupervised machine learning algorithm for the automated discovery and identification of traveling waves in spatio-temporal systems governed by partial differential equations (PDEs). Our method uses sparse regression and subspace clustering to robustly identify translational invariances that can be leveraged to build improved reduced order models (ROMs). Invariances, whether translational or rotational, are well known to compromise the ability of ROMs to produce accurate and/or low-rank representations of the spatio-temporal dynamics. However, by discovering translations in a principled way, data can be shifted into a coordinate systems where quality, low-dimensional ROMs can be constructed. This approach can be used on either numerical or experimental data with or without knowledge of the governing equations. We demonstrate our method on a variety of PDEs of increasing difficulty, taken from the field of fluid dynamics, showing the efficacy and robustness of the proposed approach." @default.
- W3100220428 created "2020-11-23" @default.
- W3100220428 creator A5036558986 @default.
- W3100220428 creator A5062653961 @default.
- W3100220428 creator A5083450863 @default.
- W3100220428 creator A5084353625 @default.
- W3100220428 creator A5091863515 @default.
- W3100220428 date "2020-05-02" @default.
- W3100220428 modified "2023-09-27" @default.
- W3100220428 title "Dimensionality reduction and reduced-order modeling for traveling wave physics" @default.
- W3100220428 cites W145067746 @default.
- W3100220428 cites W1551480811 @default.
- W3100220428 cites W1633869374 @default.
- W3100220428 cites W2014356541 @default.
- W3100220428 cites W2024585678 @default.
- W3100220428 cites W2027319740 @default.
- W3100220428 cites W2032139645 @default.
- W3100220428 cites W2075420101 @default.
- W3100220428 cites W2076110561 @default.
- W3100220428 cites W2083675468 @default.
- W3100220428 cites W2097179328 @default.
- W3100220428 cites W2104715238 @default.
- W3100220428 cites W2112823474 @default.
- W3100220428 cites W2133041109 @default.
- W3100220428 cites W2136645762 @default.
- W3100220428 cites W2145825232 @default.
- W3100220428 cites W2145962650 @default.
- W3100220428 cites W2147414751 @default.
- W3100220428 cites W2152896489 @default.
- W3100220428 cites W2159271996 @default.
- W3100220428 cites W2161155740 @default.
- W3100220428 cites W2164954534 @default.
- W3100220428 cites W2239232218 @default.
- W3100220428 cites W2334063152 @default.
- W3100220428 cites W2534240011 @default.
- W3100220428 cites W2607479264 @default.
- W3100220428 cites W2769006839 @default.
- W3100220428 cites W2795982117 @default.
- W3100220428 cites W2962706829 @default.
- W3100220428 cites W2963448313 @default.
- W3100220428 cites W2963509795 @default.
- W3100220428 cites W2963727867 @default.
- W3100220428 cites W2963739154 @default.
- W3100220428 cites W2981246174 @default.
- W3100220428 cites W3098093095 @default.
- W3100220428 cites W3099211663 @default.
- W3100220428 cites W3099803807 @default.
- W3100220428 cites W3100990647 @default.
- W3100220428 cites W3103181576 @default.
- W3100220428 cites W3105691042 @default.
- W3100220428 cites W4210968171 @default.
- W3100220428 cites W4238160257 @default.
- W3100220428 cites W630319947 @default.
- W3100220428 doi "https://doi.org/10.1007/s00162-020-00529-9" @default.
- W3100220428 hasPublicationYear "2020" @default.
- W3100220428 type Work @default.
- W3100220428 sameAs 3100220428 @default.
- W3100220428 citedByCount "31" @default.
- W3100220428 countsByYear W31002204282020 @default.
- W3100220428 countsByYear W31002204282021 @default.
- W3100220428 countsByYear W31002204282022 @default.
- W3100220428 countsByYear W31002204282023 @default.
- W3100220428 crossrefType "journal-article" @default.
- W3100220428 hasAuthorship W3100220428A5036558986 @default.
- W3100220428 hasAuthorship W3100220428A5062653961 @default.
- W3100220428 hasAuthorship W3100220428A5083450863 @default.
- W3100220428 hasAuthorship W3100220428A5084353625 @default.
- W3100220428 hasAuthorship W3100220428A5091863515 @default.
- W3100220428 hasBestOaLocation W31002204282 @default.
- W3100220428 hasConcept C104317684 @default.
- W3100220428 hasConcept C111030470 @default.
- W3100220428 hasConcept C11413529 @default.
- W3100220428 hasConcept C119857082 @default.
- W3100220428 hasConcept C134306372 @default.
- W3100220428 hasConcept C154945302 @default.
- W3100220428 hasConcept C185592680 @default.
- W3100220428 hasConcept C32834561 @default.
- W3100220428 hasConcept C33923547 @default.
- W3100220428 hasConcept C41008148 @default.
- W3100220428 hasConcept C55493867 @default.
- W3100220428 hasConcept C63479239 @default.
- W3100220428 hasConcept C70518039 @default.
- W3100220428 hasConcept C73555534 @default.
- W3100220428 hasConcept C93779851 @default.
- W3100220428 hasConceptScore W3100220428C104317684 @default.
- W3100220428 hasConceptScore W3100220428C111030470 @default.
- W3100220428 hasConceptScore W3100220428C11413529 @default.
- W3100220428 hasConceptScore W3100220428C119857082 @default.
- W3100220428 hasConceptScore W3100220428C134306372 @default.
- W3100220428 hasConceptScore W3100220428C154945302 @default.
- W3100220428 hasConceptScore W3100220428C185592680 @default.
- W3100220428 hasConceptScore W3100220428C32834561 @default.
- W3100220428 hasConceptScore W3100220428C33923547 @default.
- W3100220428 hasConceptScore W3100220428C41008148 @default.
- W3100220428 hasConceptScore W3100220428C55493867 @default.
- W3100220428 hasConceptScore W3100220428C63479239 @default.
- W3100220428 hasConceptScore W3100220428C70518039 @default.
- W3100220428 hasConceptScore W3100220428C73555534 @default.