Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100230575> ?p ?o ?g. }
- W3100230575 endingPage "29" @default.
- W3100230575 startingPage "21" @default.
- W3100230575 abstract "We apply a deep convolutional neural network segmentation model to enable novel automated microstructure segmentation applications for complex microstructures typically evaluated manually and subjectively. We explore two microstructure segmentation tasks in an openly-available ultrahigh carbon steel microstructure dataset: segmenting cementite particles in the spheroidized matrix, and segmenting larger fields of view featuring grain boundary carbide, spheroidized particle matrix, particle-free grain boundary denuded zone, and Widmanstatten cementite. We also demonstrate how to combine these data-driven microstructure segmentation models to obtain empirical cementite particle size and denuded zone width distributions from more complex micrographs containing multiple microconstituents. The full annotated dataset is available on materialsdata.nist.gov (https://materialsdata.nist.gov/handle/11256/964)." @default.
- W3100230575 created "2020-11-23" @default.
- W3100230575 creator A5002419906 @default.
- W3100230575 creator A5016287426 @default.
- W3100230575 creator A5037489231 @default.
- W3100230575 creator A5053080365 @default.
- W3100230575 date "2019-02-01" @default.
- W3100230575 modified "2023-10-16" @default.
- W3100230575 title "High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel" @default.
- W3100230575 cites W1141054642 @default.
- W3100230575 cites W1480376833 @default.
- W3100230575 cites W1535417994 @default.
- W3100230575 cites W1677182931 @default.
- W3100230575 cites W1901129140 @default.
- W3100230575 cites W1903029394 @default.
- W3100230575 cites W1948751323 @default.
- W3100230575 cites W2015159529 @default.
- W3100230575 cites W2117539524 @default.
- W3100230575 cites W2124260943 @default.
- W3100230575 cites W2133059825 @default.
- W3100230575 cites W2163272368 @default.
- W3100230575 cites W2338996000 @default.
- W3100230575 cites W2462290730 @default.
- W3100230575 cites W2586155783 @default.
- W3100230575 cites W2590454924 @default.
- W3100230575 cites W2620045026 @default.
- W3100230575 cites W2919115771 @default.
- W3100230575 cites W2962809185 @default.
- W3100230575 cites W2963881378 @default.
- W3100230575 cites W3099859964 @default.
- W3100230575 cites W4250533120 @default.
- W3100230575 cites W4255375128 @default.
- W3100230575 doi "https://doi.org/10.1017/s1431927618015635" @default.
- W3100230575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30869574" @default.
- W3100230575 hasPublicationYear "2019" @default.
- W3100230575 type Work @default.
- W3100230575 sameAs 3100230575 @default.
- W3100230575 citedByCount "115" @default.
- W3100230575 countsByYear W31002305752018 @default.
- W3100230575 countsByYear W31002305752019 @default.
- W3100230575 countsByYear W31002305752020 @default.
- W3100230575 countsByYear W31002305752021 @default.
- W3100230575 countsByYear W31002305752022 @default.
- W3100230575 countsByYear W31002305752023 @default.
- W3100230575 crossrefType "journal-article" @default.
- W3100230575 hasAuthorship W3100230575A5002419906 @default.
- W3100230575 hasAuthorship W3100230575A5016287426 @default.
- W3100230575 hasAuthorship W3100230575A5037489231 @default.
- W3100230575 hasAuthorship W3100230575A5053080365 @default.
- W3100230575 hasBestOaLocation W31002305752 @default.
- W3100230575 hasConcept C111219384 @default.
- W3100230575 hasConcept C154945302 @default.
- W3100230575 hasConcept C191897082 @default.
- W3100230575 hasConcept C192562407 @default.
- W3100230575 hasConcept C2781297133 @default.
- W3100230575 hasConcept C28490314 @default.
- W3100230575 hasConcept C41008148 @default.
- W3100230575 hasConcept C47908070 @default.
- W3100230575 hasConcept C5335593 @default.
- W3100230575 hasConcept C5701217 @default.
- W3100230575 hasConcept C81363708 @default.
- W3100230575 hasConcept C87976508 @default.
- W3100230575 hasConcept C89600930 @default.
- W3100230575 hasConcept C96288455 @default.
- W3100230575 hasConceptScore W3100230575C111219384 @default.
- W3100230575 hasConceptScore W3100230575C154945302 @default.
- W3100230575 hasConceptScore W3100230575C191897082 @default.
- W3100230575 hasConceptScore W3100230575C192562407 @default.
- W3100230575 hasConceptScore W3100230575C2781297133 @default.
- W3100230575 hasConceptScore W3100230575C28490314 @default.
- W3100230575 hasConceptScore W3100230575C41008148 @default.
- W3100230575 hasConceptScore W3100230575C47908070 @default.
- W3100230575 hasConceptScore W3100230575C5335593 @default.
- W3100230575 hasConceptScore W3100230575C5701217 @default.
- W3100230575 hasConceptScore W3100230575C81363708 @default.
- W3100230575 hasConceptScore W3100230575C87976508 @default.
- W3100230575 hasConceptScore W3100230575C89600930 @default.
- W3100230575 hasConceptScore W3100230575C96288455 @default.
- W3100230575 hasIssue "1" @default.
- W3100230575 hasLocation W31002305751 @default.
- W3100230575 hasLocation W31002305752 @default.
- W3100230575 hasLocation W31002305753 @default.
- W3100230575 hasOpenAccess W3100230575 @default.
- W3100230575 hasPrimaryLocation W31002305751 @default.
- W3100230575 hasRelatedWork W2045275826 @default.
- W3100230575 hasRelatedWork W2095361508 @default.
- W3100230575 hasRelatedWork W2307889689 @default.
- W3100230575 hasRelatedWork W2351671951 @default.
- W3100230575 hasRelatedWork W2358441801 @default.
- W3100230575 hasRelatedWork W2806705296 @default.
- W3100230575 hasRelatedWork W3123541218 @default.
- W3100230575 hasRelatedWork W3125099925 @default.
- W3100230575 hasRelatedWork W3158126599 @default.
- W3100230575 hasRelatedWork W758835855 @default.
- W3100230575 hasVolume "25" @default.
- W3100230575 isParatext "false" @default.
- W3100230575 isRetracted "false" @default.
- W3100230575 magId "3100230575" @default.