Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100237175> ?p ?o ?g. }
- W3100237175 endingPage "514" @default.
- W3100237175 startingPage "491" @default.
- W3100237175 abstract "The question of optimal spanwise-periodic modification for the stabilisation of spanwise-invariant flows is addressed. A second-order sensitivity analysis is conducted for the linear temporal stability of parallel flows $U_{0}$ subject to small-amplitude spanwise-periodic modification ${itepsilon}U_{1},{itepsilon}ll 1$ . It is known that spanwise-periodic flow modifications have a quadratic effect on stability properties, i.e. the first-order eigenvalue variation is zero, hence the need for a second-order analysis. A second-order sensitivity operator is computed from a one-dimensional calculation, which allows one to predict how eigenvalues are affected by any flow modification $U_{1}$ , without actually solving for modified eigenvalues and eigenmodes. Comparisons with full two-dimensional stability calculations in a plane channel flow and in a mixing layer show excellent agreement. Next, optimisation is performed on the second-order sensitivity operator: for each eigenmode streamwise wavenumber ${italpha}_{0}$ and base flow modification spanwise wavenumber ${itbeta}$ , the most stabilising/destabilising profiles $U_{1}$ are computed, together with lower/upper bounds for the variation in leading eigenvalue. These bounds increase like ${itbeta}^{-2}$ as ${itbeta}$ goes to zero, thus yielding a large stabilising potential. However, three-dimensional modes with wavenumbers ${itbeta}_{0}=pm {itbeta}$ , $pm {itbeta}/2$ are destabilised, and therefore larger control wavenumbers should be preferred. The most stabilising $U_{1}$ optimised for the most unstable streamwise wavenumber ${italpha}_{0,max}$ has a stabilising effect on modes with other ${italpha}_{0}$ values too. Finally, the potential of transient growth to amplify perturbations and stabilise the flow is assessed with a combined optimisation. Assuming a separation of time scales between the fast unstable mode and the slow transient evolution of the optimal perturbations, combined optimal perturbations that achieve the best balance between transient linear amplification and stabilisation of the nominal shear flow are determined. In the mixing layer with ${itbeta}leqslant 1.5$ , these combined optimal perturbations appear similar to transient growth-only optimal perturbations, and achieve a more efficient overall stabilisation than optimal spanwise-periodic and spanwise-invariant modifications computed for stabilisation only. These results are consistent with the efficiency of streak-based control strategies." @default.
- W3100237175 created "2020-11-23" @default.
- W3100237175 creator A5006084552 @default.
- W3100237175 creator A5019218868 @default.
- W3100237175 creator A5039078692 @default.
- W3100237175 date "2015-10-08" @default.
- W3100237175 modified "2023-10-16" @default.
- W3100237175 title "Second-order sensitivity of parallel shear flows and optimal spanwise-periodic flow modifications" @default.
- W3100237175 cites W1490180844 @default.
- W3100237175 cites W1965118954 @default.
- W3100237175 cites W1975827324 @default.
- W3100237175 cites W1994980731 @default.
- W3100237175 cites W2003195938 @default.
- W3100237175 cites W2004772433 @default.
- W3100237175 cites W2011655084 @default.
- W3100237175 cites W2021839831 @default.
- W3100237175 cites W2038516800 @default.
- W3100237175 cites W2055467001 @default.
- W3100237175 cites W2062856798 @default.
- W3100237175 cites W2076158602 @default.
- W3100237175 cites W2082187902 @default.
- W3100237175 cites W2084742709 @default.
- W3100237175 cites W2105999135 @default.
- W3100237175 cites W2114485455 @default.
- W3100237175 cites W2119928489 @default.
- W3100237175 cites W2122954384 @default.
- W3100237175 cites W2146538728 @default.
- W3100237175 cites W2150679488 @default.
- W3100237175 cites W2153351519 @default.
- W3100237175 cites W2155638978 @default.
- W3100237175 cites W2161818902 @default.
- W3100237175 cites W2395293397 @default.
- W3100237175 cites W4206029394 @default.
- W3100237175 cites W4210832181 @default.
- W3100237175 doi "https://doi.org/10.1017/jfm.2015.543" @default.
- W3100237175 hasPublicationYear "2015" @default.
- W3100237175 type Work @default.
- W3100237175 sameAs 3100237175 @default.
- W3100237175 citedByCount "14" @default.
- W3100237175 countsByYear W31002371752017 @default.
- W3100237175 countsByYear W31002371752018 @default.
- W3100237175 countsByYear W31002371752019 @default.
- W3100237175 countsByYear W31002371752020 @default.
- W3100237175 countsByYear W31002371752021 @default.
- W3100237175 countsByYear W31002371752023 @default.
- W3100237175 crossrefType "journal-article" @default.
- W3100237175 hasAuthorship W3100237175A5006084552 @default.
- W3100237175 hasAuthorship W3100237175A5019218868 @default.
- W3100237175 hasAuthorship W3100237175A5039078692 @default.
- W3100237175 hasBestOaLocation W31002371752 @default.
- W3100237175 hasConcept C120665830 @default.
- W3100237175 hasConcept C121130766 @default.
- W3100237175 hasConcept C121332964 @default.
- W3100237175 hasConcept C127413603 @default.
- W3100237175 hasConcept C129844170 @default.
- W3100237175 hasConcept C134306372 @default.
- W3100237175 hasConcept C135768490 @default.
- W3100237175 hasConcept C158693339 @default.
- W3100237175 hasConcept C180205008 @default.
- W3100237175 hasConcept C182748727 @default.
- W3100237175 hasConcept C196558001 @default.
- W3100237175 hasConcept C199360897 @default.
- W3100237175 hasConcept C21200559 @default.
- W3100237175 hasConcept C24326235 @default.
- W3100237175 hasConcept C2524010 @default.
- W3100237175 hasConcept C2776174256 @default.
- W3100237175 hasConcept C33923547 @default.
- W3100237175 hasConcept C38349280 @default.
- W3100237175 hasConcept C41008148 @default.
- W3100237175 hasConcept C57879066 @default.
- W3100237175 hasConcept C62520636 @default.
- W3100237175 hasConceptScore W3100237175C120665830 @default.
- W3100237175 hasConceptScore W3100237175C121130766 @default.
- W3100237175 hasConceptScore W3100237175C121332964 @default.
- W3100237175 hasConceptScore W3100237175C127413603 @default.
- W3100237175 hasConceptScore W3100237175C129844170 @default.
- W3100237175 hasConceptScore W3100237175C134306372 @default.
- W3100237175 hasConceptScore W3100237175C135768490 @default.
- W3100237175 hasConceptScore W3100237175C158693339 @default.
- W3100237175 hasConceptScore W3100237175C180205008 @default.
- W3100237175 hasConceptScore W3100237175C182748727 @default.
- W3100237175 hasConceptScore W3100237175C196558001 @default.
- W3100237175 hasConceptScore W3100237175C199360897 @default.
- W3100237175 hasConceptScore W3100237175C21200559 @default.
- W3100237175 hasConceptScore W3100237175C24326235 @default.
- W3100237175 hasConceptScore W3100237175C2524010 @default.
- W3100237175 hasConceptScore W3100237175C2776174256 @default.
- W3100237175 hasConceptScore W3100237175C33923547 @default.
- W3100237175 hasConceptScore W3100237175C38349280 @default.
- W3100237175 hasConceptScore W3100237175C41008148 @default.
- W3100237175 hasConceptScore W3100237175C57879066 @default.
- W3100237175 hasConceptScore W3100237175C62520636 @default.
- W3100237175 hasLocation W31002371751 @default.
- W3100237175 hasLocation W31002371752 @default.
- W3100237175 hasLocation W31002371753 @default.
- W3100237175 hasLocation W31002371754 @default.
- W3100237175 hasLocation W31002371755 @default.
- W3100237175 hasOpenAccess W3100237175 @default.