Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100238265> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3100238265 abstract "Tartaglia and Pearce have argued that the nonunitary $ntimes n$ fused Forrester-Baxter $mbox{RSOS}(m,m')$ models are described, in the continuum scaling limit, by the minimal models ${cal M}(M,M',n)$ constructed as the higher-level conformal cosets $(A^{(1)}_1)_kotimes (A^{(1)}_1)_n/(A^{(1)}_1)_{k+n}$ at integer fusion level $nge 1$ and fractional level $k=nM/(M'!-!M)-2$ with $(M,M')=big(nm-(n!-!1)m',m'big)$. These results rely on Yang-Baxter integrability and are valid in Regime III for models determined by the crossing parameter $lambda=(m'!-!m)pi/m'$ in the interval $0<lambda<pi/n$. Here we consider the $2times 2$ $mbox{RSOS}(m,m')$ models in the interval $tfrac{pi}{2}<lambda<pi$ and investigate the associated one-dimensional sums. In this interval, we verify that the one-dimensional sums produce new finitized Virasoro characters $ch_{r,s}^{(N)}(q)$ of the minimal models ${cal M}(m,m',1)$ with $m'>2m$. We further conjecture finitized bosonic forms and check that these agree with the ground state one-dimensional sums out to system sizes $N=12$. The $2times 2$ $mbox{RSOS}(m,m')$ models thus realize new Yang-Baxter integrable models in the universality classes of the minimal models ${cal M}(m,m',1)$. For the series ${cal M}(m,2m+1,1)$ with $mge 2$, the spin-1 one-dimensional sums were previously analysed by Jacob and Mathieu without the underlying Yang-Baxter structure. Finitized Kac characters $chi_{r,s}^{m,m';(N)}(q)$ for the logarithmic minimal models ${cal LM}(p,p',1)$ are also obtained for $p'ge 2p$ by taking the logarithmic limit $m,m'toinfty$ with $m'/mto p'/p+$." @default.
- W3100238265 created "2020-11-23" @default.
- W3100238265 creator A5025314963 @default.
- W3100238265 creator A5041584016 @default.
- W3100238265 creator A5057979071 @default.
- W3100238265 date "2018-07-23" @default.
- W3100238265 modified "2023-09-26" @default.
- W3100238265 title "One-dimensional sums and finitized characters of 2 × 2 fused RSOS models" @default.
- W3100238265 cites W1573845583 @default.
- W3100238265 cites W1734288811 @default.
- W3100238265 cites W1971130836 @default.
- W3100238265 cites W1976152504 @default.
- W3100238265 cites W1977734789 @default.
- W3100238265 cites W1980139645 @default.
- W3100238265 cites W1983818053 @default.
- W3100238265 cites W1994682295 @default.
- W3100238265 cites W2003908667 @default.
- W3100238265 cites W2009768419 @default.
- W3100238265 cites W2009930506 @default.
- W3100238265 cites W2010838718 @default.
- W3100238265 cites W2012033864 @default.
- W3100238265 cites W2017291161 @default.
- W3100238265 cites W2017687508 @default.
- W3100238265 cites W2030249398 @default.
- W3100238265 cites W2042835016 @default.
- W3100238265 cites W2057701531 @default.
- W3100238265 cites W2066805026 @default.
- W3100238265 cites W2068674173 @default.
- W3100238265 cites W2069182458 @default.
- W3100238265 cites W2072394972 @default.
- W3100238265 cites W2074670256 @default.
- W3100238265 cites W2075359953 @default.
- W3100238265 cites W2080966527 @default.
- W3100238265 cites W2083515056 @default.
- W3100238265 cites W2086031744 @default.
- W3100238265 cites W2099920635 @default.
- W3100238265 cites W2104055252 @default.
- W3100238265 cites W2109398730 @default.
- W3100238265 cites W2126154558 @default.
- W3100238265 cites W2132968125 @default.
- W3100238265 cites W2142824713 @default.
- W3100238265 cites W2151893616 @default.
- W3100238265 cites W2160288246 @default.
- W3100238265 cites W2269882578 @default.
- W3100238265 cites W2619498089 @default.
- W3100238265 cites W2962947526 @default.
- W3100238265 cites W3034748896 @default.
- W3100238265 cites W3101366936 @default.
- W3100238265 cites W3101472019 @default.
- W3100238265 cites W3125560043 @default.
- W3100238265 cites W4239702435 @default.
- W3100238265 cites W4245402428 @default.
- W3100238265 cites W4376848327 @default.
- W3100238265 doi "https://doi.org/10.1088/1742-5468/aace1d" @default.
- W3100238265 hasPublicationYear "2018" @default.
- W3100238265 type Work @default.
- W3100238265 sameAs 3100238265 @default.
- W3100238265 citedByCount "0" @default.
- W3100238265 crossrefType "journal-article" @default.
- W3100238265 hasAuthorship W3100238265A5025314963 @default.
- W3100238265 hasAuthorship W3100238265A5041584016 @default.
- W3100238265 hasAuthorship W3100238265A5057979071 @default.
- W3100238265 hasBestOaLocation W31002382652 @default.
- W3100238265 hasConcept C33923547 @default.
- W3100238265 hasConceptScore W3100238265C33923547 @default.
- W3100238265 hasLocation W31002382651 @default.
- W3100238265 hasLocation W31002382652 @default.
- W3100238265 hasOpenAccess W3100238265 @default.
- W3100238265 hasPrimaryLocation W31002382651 @default.
- W3100238265 hasRelatedWork W1974891317 @default.
- W3100238265 hasRelatedWork W2021540654 @default.
- W3100238265 hasRelatedWork W2042127053 @default.
- W3100238265 hasRelatedWork W2088929118 @default.
- W3100238265 hasRelatedWork W2187256922 @default.
- W3100238265 hasRelatedWork W2313400459 @default.
- W3100238265 hasRelatedWork W2748952813 @default.
- W3100238265 hasRelatedWork W2899084033 @default.
- W3100238265 hasRelatedWork W2913765211 @default.
- W3100238265 hasRelatedWork W4244379845 @default.
- W3100238265 isParatext "false" @default.
- W3100238265 isRetracted "false" @default.
- W3100238265 magId "3100238265" @default.
- W3100238265 workType "article" @default.