Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100249018> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3100249018 endingPage "106868" @default.
- W3100249018 startingPage "106868" @default.
- W3100249018 abstract "Different from single-label learning, multi-label learning has rich semantic information. Label embedding obtains the inherent intelligence of the label space by projecting the label space into a latent one. However, the label space is inevitably incomplete. The missing label data will lead to the label embedding model capturing incomplete inherent information. Therefore, label data recovery becomes particularly important. However, the label correlations recovery mechanism only considers the label correlations but ignores the objective existence of instance-correlation information. The information we obtain from the perspective of label correlations alone will produce inadequate and incorrect phenomena when a large number of labels are lost or wrong. In this paper, a two-level label recovery mechanism is used not only to recover label data from the label perspective but also to take full advantage of the instance correlations in the label space. Although the two-level label recovery mechanism considers both instances and labels, it ignores the label space after recovery to capture its essential information. Therefore, combining the two-level semantic information, we propose a label embedding for multi-label classification based on a two-level label recovery mechanism about missing labels model for incomplete datasets, which is the two-level label recovery. Firstly, the two-level label space is projected to the inherent space, and then the instance and label correlations information are captured in the inherent space. Finally, it is applied to the label prediction of classifiers. The algorithm is trained and tested on several complete and incomplete multi-label datasets. It shows that the proposed algorithm has a good classification effect on the largely missed datasets. The results and statistical hypothesis tests further verify the effectiveness of the proposed algorithm." @default.
- W3100249018 created "2020-11-23" @default.
- W3100249018 creator A5027986071 @default.
- W3100249018 creator A5042679796 @default.
- W3100249018 creator A5066188490 @default.
- W3100249018 creator A5071804799 @default.
- W3100249018 date "2021-02-01" @default.
- W3100249018 modified "2023-09-23" @default.
- W3100249018 title "Two-level label recovery-based label embedding for multi-label classification with missing labels" @default.
- W3100249018 cites W2026131661 @default.
- W3100249018 cites W2029517229 @default.
- W3100249018 cites W2052684427 @default.
- W3100249018 cites W2100556411 @default.
- W3100249018 cites W2114315281 @default.
- W3100249018 cites W2142224912 @default.
- W3100249018 cites W2146241755 @default.
- W3100249018 cites W2156935079 @default.
- W3100249018 cites W2605997098 @default.
- W3100249018 cites W2612651689 @default.
- W3100249018 cites W2811296027 @default.
- W3100249018 cites W2889271120 @default.
- W3100249018 cites W2892348477 @default.
- W3100249018 cites W2905927259 @default.
- W3100249018 cites W2910593176 @default.
- W3100249018 cites W2911725274 @default.
- W3100249018 cites W2914785874 @default.
- W3100249018 cites W2932653301 @default.
- W3100249018 cites W2938834426 @default.
- W3100249018 doi "https://doi.org/10.1016/j.asoc.2020.106868" @default.
- W3100249018 hasPublicationYear "2021" @default.
- W3100249018 type Work @default.
- W3100249018 sameAs 3100249018 @default.
- W3100249018 citedByCount "7" @default.
- W3100249018 countsByYear W31002490182022 @default.
- W3100249018 countsByYear W31002490182023 @default.
- W3100249018 crossrefType "journal-article" @default.
- W3100249018 hasAuthorship W3100249018A5027986071 @default.
- W3100249018 hasAuthorship W3100249018A5042679796 @default.
- W3100249018 hasAuthorship W3100249018A5066188490 @default.
- W3100249018 hasAuthorship W3100249018A5071804799 @default.
- W3100249018 hasConcept C111919701 @default.
- W3100249018 hasConcept C119857082 @default.
- W3100249018 hasConcept C124101348 @default.
- W3100249018 hasConcept C12713177 @default.
- W3100249018 hasConcept C153180895 @default.
- W3100249018 hasConcept C154945302 @default.
- W3100249018 hasConcept C2776482837 @default.
- W3100249018 hasConcept C2778572836 @default.
- W3100249018 hasConcept C41008148 @default.
- W3100249018 hasConcept C41608201 @default.
- W3100249018 hasConceptScore W3100249018C111919701 @default.
- W3100249018 hasConceptScore W3100249018C119857082 @default.
- W3100249018 hasConceptScore W3100249018C124101348 @default.
- W3100249018 hasConceptScore W3100249018C12713177 @default.
- W3100249018 hasConceptScore W3100249018C153180895 @default.
- W3100249018 hasConceptScore W3100249018C154945302 @default.
- W3100249018 hasConceptScore W3100249018C2776482837 @default.
- W3100249018 hasConceptScore W3100249018C2778572836 @default.
- W3100249018 hasConceptScore W3100249018C41008148 @default.
- W3100249018 hasConceptScore W3100249018C41608201 @default.
- W3100249018 hasLocation W31002490181 @default.
- W3100249018 hasOpenAccess W3100249018 @default.
- W3100249018 hasPrimaryLocation W31002490181 @default.
- W3100249018 hasRelatedWork W1914651075 @default.
- W3100249018 hasRelatedWork W2912288872 @default.
- W3100249018 hasRelatedWork W2961085424 @default.
- W3100249018 hasRelatedWork W2966628364 @default.
- W3100249018 hasRelatedWork W3046775127 @default.
- W3100249018 hasRelatedWork W4285260836 @default.
- W3100249018 hasRelatedWork W4286629047 @default.
- W3100249018 hasRelatedWork W4306321456 @default.
- W3100249018 hasRelatedWork W4306674287 @default.
- W3100249018 hasRelatedWork W4224009465 @default.
- W3100249018 hasVolume "99" @default.
- W3100249018 isParatext "false" @default.
- W3100249018 isRetracted "false" @default.
- W3100249018 magId "3100249018" @default.
- W3100249018 workType "article" @default.