Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100249628> ?p ?o ?g. }
- W3100249628 endingPage "118910" @default.
- W3100249628 startingPage "118910" @default.
- W3100249628 abstract "Machine learning overfitting caused by data scarcity greatly limits the application of chemical artificial intelligence in membrane materials. As the original data for thin film polyamide nanofiltration membranes is limited, here we propose to extract the natural features of monomer molecular structures and rationally distort them to augment the data availability. This few-shot learning method allows a chemical engineering project to leverage the powerful fit of deep learning without big data at the outset, which is advantageous over traditional machine learning models. The rejection and flux predictions of polyamide nanofiltration membranes are practiced by the molecular augmentation in deep learning. Convergence of loss function indicates that the model is effectively optimized. Correlation coefficients over 0.80 and the mean relative error below 5% prove an accurate prediction of nanofiltration performance. The success of predicting nanofiltration membrane performances is widely instructive for molecule and material science." @default.
- W3100249628 created "2020-11-23" @default.
- W3100249628 creator A5009715711 @default.
- W3100249628 creator A5013109310 @default.
- W3100249628 creator A5030211678 @default.
- W3100249628 creator A5052676364 @default.
- W3100249628 creator A5065508033 @default.
- W3100249628 creator A5086907608 @default.
- W3100249628 date "2021-02-01" @default.
- W3100249628 modified "2023-09-29" @default.
- W3100249628 title "Deep spatial representation learning of polyamide nanofiltration membranes" @default.
- W3100249628 cites W1513798492 @default.
- W3100249628 cites W1529463314 @default.
- W3100249628 cites W1963982052 @default.
- W3100249628 cites W1970012312 @default.
- W3100249628 cites W2007339694 @default.
- W3100249628 cites W2020156565 @default.
- W3100249628 cites W2029413789 @default.
- W3100249628 cites W2052356798 @default.
- W3100249628 cites W2112796928 @default.
- W3100249628 cites W2145851443 @default.
- W3100249628 cites W2168257146 @default.
- W3100249628 cites W2194321275 @default.
- W3100249628 cites W2218025900 @default.
- W3100249628 cites W2255548690 @default.
- W3100249628 cites W2332136976 @default.
- W3100249628 cites W236041936 @default.
- W3100249628 cites W2580300294 @default.
- W3100249628 cites W2624487967 @default.
- W3100249628 cites W2757181572 @default.
- W3100249628 cites W2762107502 @default.
- W3100249628 cites W2774163080 @default.
- W3100249628 cites W2794822175 @default.
- W3100249628 cites W2803058542 @default.
- W3100249628 cites W2804890126 @default.
- W3100249628 cites W2883069024 @default.
- W3100249628 cites W2883583109 @default.
- W3100249628 cites W2884430236 @default.
- W3100249628 cites W2916766184 @default.
- W3100249628 cites W2920272494 @default.
- W3100249628 cites W2937016166 @default.
- W3100249628 cites W2937361499 @default.
- W3100249628 cites W2940242941 @default.
- W3100249628 cites W2944931757 @default.
- W3100249628 cites W2968923792 @default.
- W3100249628 cites W2969082153 @default.
- W3100249628 cites W2972128159 @default.
- W3100249628 cites W2972286254 @default.
- W3100249628 cites W2972424724 @default.
- W3100249628 cites W2982668911 @default.
- W3100249628 cites W2997332132 @default.
- W3100249628 cites W3001164290 @default.
- W3100249628 cites W3023015810 @default.
- W3100249628 doi "https://doi.org/10.1016/j.memsci.2020.118910" @default.
- W3100249628 hasPublicationYear "2021" @default.
- W3100249628 type Work @default.
- W3100249628 sameAs 3100249628 @default.
- W3100249628 citedByCount "10" @default.
- W3100249628 countsByYear W31002496282021 @default.
- W3100249628 countsByYear W31002496282022 @default.
- W3100249628 countsByYear W31002496282023 @default.
- W3100249628 crossrefType "journal-article" @default.
- W3100249628 hasAuthorship W3100249628A5009715711 @default.
- W3100249628 hasAuthorship W3100249628A5013109310 @default.
- W3100249628 hasAuthorship W3100249628A5030211678 @default.
- W3100249628 hasAuthorship W3100249628A5052676364 @default.
- W3100249628 hasAuthorship W3100249628A5065508033 @default.
- W3100249628 hasAuthorship W3100249628A5086907608 @default.
- W3100249628 hasConcept C108583219 @default.
- W3100249628 hasConcept C119857082 @default.
- W3100249628 hasConcept C146763847 @default.
- W3100249628 hasConcept C154945302 @default.
- W3100249628 hasConcept C185592680 @default.
- W3100249628 hasConcept C188027245 @default.
- W3100249628 hasConcept C190399342 @default.
- W3100249628 hasConcept C192562407 @default.
- W3100249628 hasConcept C41008148 @default.
- W3100249628 hasConcept C41625074 @default.
- W3100249628 hasConcept C55493867 @default.
- W3100249628 hasConceptScore W3100249628C108583219 @default.
- W3100249628 hasConceptScore W3100249628C119857082 @default.
- W3100249628 hasConceptScore W3100249628C146763847 @default.
- W3100249628 hasConceptScore W3100249628C154945302 @default.
- W3100249628 hasConceptScore W3100249628C185592680 @default.
- W3100249628 hasConceptScore W3100249628C188027245 @default.
- W3100249628 hasConceptScore W3100249628C190399342 @default.
- W3100249628 hasConceptScore W3100249628C192562407 @default.
- W3100249628 hasConceptScore W3100249628C41008148 @default.
- W3100249628 hasConceptScore W3100249628C41625074 @default.
- W3100249628 hasConceptScore W3100249628C55493867 @default.
- W3100249628 hasFunder F4320321883 @default.
- W3100249628 hasLocation W31002496281 @default.
- W3100249628 hasOpenAccess W3100249628 @default.
- W3100249628 hasPrimaryLocation W31002496281 @default.
- W3100249628 hasRelatedWork W1966303846 @default.
- W3100249628 hasRelatedWork W1977033132 @default.
- W3100249628 hasRelatedWork W2076101952 @default.
- W3100249628 hasRelatedWork W2360671106 @default.