Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100256308> ?p ?o ?g. }
- W3100256308 endingPage "2391" @default.
- W3100256308 startingPage "2379" @default.
- W3100256308 abstract "We adopt Convolutional Neural Networks (CNNs) to be our parametric model to learn discriminative features and classifiers for local patch classification. Based on the occurrence frequency distribution of classes, an ensemble of CNNs (CNN-Ensemble) are learned, in which each CNN component focuses on learning different and complementary visual patterns. The local beliefs of pixels are output by CNN-Ensemble. Considering that visually similar pixels are indistinguishable under local context, we leverage the global scene semantics to alleviate the local ambiguity. The global scene constraint is mathematically achieved by adding a global energy term to the labeling energy function, and it is practically estimated in a non-parametric framework. A large margin based CNN metric learning method is also proposed for better global belief estimation. In the end, the integration of local and global beliefs gives rise to the class likelihood of pixels, based on which maximum marginal inference is performed to generate the label prediction maps. Even without any post-processing, we achieve state-of-the-art results on the challenging SiftFlow and Barcelona benchmarks." @default.
- W3100256308 created "2020-11-23" @default.
- W3100256308 creator A5006662591 @default.
- W3100256308 creator A5030921116 @default.
- W3100256308 creator A5040040696 @default.
- W3100256308 creator A5048015379 @default.
- W3100256308 date "2016-05-01" @default.
- W3100256308 modified "2023-09-23" @default.
- W3100256308 title "Scene Parsing With Integration of Parametric and Non-Parametric Models" @default.
- W3100256308 cites W1221285097 @default.
- W3100256308 cites W137456267 @default.
- W3100256308 cites W1512976292 @default.
- W3100256308 cites W1528789833 @default.
- W3100256308 cites W1532257412 @default.
- W3100256308 cites W1597779259 @default.
- W3100256308 cites W1897260080 @default.
- W3100256308 cites W190007845 @default.
- W3100256308 cites W1955371424 @default.
- W3100256308 cites W1963882359 @default.
- W3100256308 cites W1968752118 @default.
- W3100256308 cites W2022508996 @default.
- W3100256308 cites W2027327099 @default.
- W3100256308 cites W2047226863 @default.
- W3100256308 cites W2051179318 @default.
- W3100256308 cites W2051458493 @default.
- W3100256308 cites W2053973158 @default.
- W3100256308 cites W2066757459 @default.
- W3100256308 cites W2071027807 @default.
- W3100256308 cites W2076434944 @default.
- W3100256308 cites W2090997445 @default.
- W3100256308 cites W2112796928 @default.
- W3100256308 cites W2116877738 @default.
- W3100256308 cites W2117539524 @default.
- W3100256308 cites W2124592697 @default.
- W3100256308 cites W2145287260 @default.
- W3100256308 cites W2151103935 @default.
- W3100256308 cites W2154083146 @default.
- W3100256308 cites W2154644822 @default.
- W3100256308 cites W2161381512 @default.
- W3100256308 cites W2162915993 @default.
- W3100256308 cites W2252984343 @default.
- W3100256308 cites W2911964244 @default.
- W3100256308 cites W38955421 @default.
- W3100256308 cites W4212883601 @default.
- W3100256308 cites W4232478844 @default.
- W3100256308 doi "https://doi.org/10.1109/tip.2016.2533862" @default.
- W3100256308 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26929044" @default.
- W3100256308 hasPublicationYear "2016" @default.
- W3100256308 type Work @default.
- W3100256308 sameAs 3100256308 @default.
- W3100256308 citedByCount "19" @default.
- W3100256308 countsByYear W31002563082015 @default.
- W3100256308 countsByYear W31002563082016 @default.
- W3100256308 countsByYear W31002563082017 @default.
- W3100256308 countsByYear W31002563082018 @default.
- W3100256308 countsByYear W31002563082019 @default.
- W3100256308 countsByYear W31002563082020 @default.
- W3100256308 countsByYear W31002563082021 @default.
- W3100256308 countsByYear W31002563082022 @default.
- W3100256308 crossrefType "journal-article" @default.
- W3100256308 hasAuthorship W3100256308A5006662591 @default.
- W3100256308 hasAuthorship W3100256308A5030921116 @default.
- W3100256308 hasAuthorship W3100256308A5040040696 @default.
- W3100256308 hasAuthorship W3100256308A5048015379 @default.
- W3100256308 hasBestOaLocation W31002563082 @default.
- W3100256308 hasConcept C102366305 @default.
- W3100256308 hasConcept C105795698 @default.
- W3100256308 hasConcept C117251300 @default.
- W3100256308 hasConcept C119857082 @default.
- W3100256308 hasConcept C151730666 @default.
- W3100256308 hasConcept C153083717 @default.
- W3100256308 hasConcept C153180895 @default.
- W3100256308 hasConcept C154945302 @default.
- W3100256308 hasConcept C160633673 @default.
- W3100256308 hasConcept C186644900 @default.
- W3100256308 hasConcept C2776214188 @default.
- W3100256308 hasConcept C2779343474 @default.
- W3100256308 hasConcept C33923547 @default.
- W3100256308 hasConcept C41008148 @default.
- W3100256308 hasConcept C774472 @default.
- W3100256308 hasConcept C81363708 @default.
- W3100256308 hasConcept C86803240 @default.
- W3100256308 hasConcept C97931131 @default.
- W3100256308 hasConceptScore W3100256308C102366305 @default.
- W3100256308 hasConceptScore W3100256308C105795698 @default.
- W3100256308 hasConceptScore W3100256308C117251300 @default.
- W3100256308 hasConceptScore W3100256308C119857082 @default.
- W3100256308 hasConceptScore W3100256308C151730666 @default.
- W3100256308 hasConceptScore W3100256308C153083717 @default.
- W3100256308 hasConceptScore W3100256308C153180895 @default.
- W3100256308 hasConceptScore W3100256308C154945302 @default.
- W3100256308 hasConceptScore W3100256308C160633673 @default.
- W3100256308 hasConceptScore W3100256308C186644900 @default.
- W3100256308 hasConceptScore W3100256308C2776214188 @default.
- W3100256308 hasConceptScore W3100256308C2779343474 @default.
- W3100256308 hasConceptScore W3100256308C33923547 @default.
- W3100256308 hasConceptScore W3100256308C41008148 @default.
- W3100256308 hasConceptScore W3100256308C774472 @default.