Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100258311> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3100258311 abstract "Most MRI liver segmentation methods use a structural 3D scan as input, such as a T1 or T2 weighted scan. Segmentation performance may be improved by utilizing both structural and functional information, as contained in dynamic contrast enhanced (DCE) MR series. Dynamic information can be incorporated in a segmentation method based on convolutional neural networks in a number of ways. In this study, the optimal input configuration of DCE MR images for convolutional neural networks (CNNs) is studied. The performance of three different input configurations for CNNs is studied for a liver segmentation task. The three configurations are I) one phase image of the DCE-MR series as input image; II) the separate phases of the DCE-MR as input images; and III) the separate phases of the DCE-MR as channels of one input image. The three input configurations are fed into a dilated fully convolutional network and into a small U-net. The CNNs were trained using 19 annotated DCE-MR series and tested on another 19 annotated DCE-MR series. The performance of the three input configurations for both networks is evaluated against manual annotations. The results show that both neural networks perform better when the separate phases of the DCE-MR series are used as channels of an input image in comparison to one phase as input image or the separate phases as input images. No significant difference between the performances of the two network architectures was found for the separate phases as channels of an input image." @default.
- W3100258311 created "2020-11-23" @default.
- W3100258311 creator A5049310841 @default.
- W3100258311 creator A5057583165 @default.
- W3100258311 creator A5078692612 @default.
- W3100258311 date "2019-03-15" @default.
- W3100258311 modified "2023-10-14" @default.
- W3100258311 title "Optimal input configuration of dynamic contrast enhanced MRI in convolutional neural networks for liver segmentation" @default.
- W3100258311 cites W2035186208 @default.
- W3100258311 cites W2079088467 @default.
- W3100258311 cites W2132549764 @default.
- W3100258311 cites W2551560790 @default.
- W3100258311 cites W2554204699 @default.
- W3100258311 cites W2592929672 @default.
- W3100258311 cites W2748598167 @default.
- W3100258311 cites W2962914239 @default.
- W3100258311 doi "https://doi.org/10.1117/12.2506770" @default.
- W3100258311 hasPublicationYear "2019" @default.
- W3100258311 type Work @default.
- W3100258311 sameAs 3100258311 @default.
- W3100258311 citedByCount "2" @default.
- W3100258311 countsByYear W31002583112019 @default.
- W3100258311 countsByYear W31002583112021 @default.
- W3100258311 crossrefType "proceedings-article" @default.
- W3100258311 hasAuthorship W3100258311A5049310841 @default.
- W3100258311 hasAuthorship W3100258311A5057583165 @default.
- W3100258311 hasAuthorship W3100258311A5078692612 @default.
- W3100258311 hasBestOaLocation W31002583112 @default.
- W3100258311 hasConcept C115961682 @default.
- W3100258311 hasConcept C143724316 @default.
- W3100258311 hasConcept C151730666 @default.
- W3100258311 hasConcept C153180895 @default.
- W3100258311 hasConcept C154945302 @default.
- W3100258311 hasConcept C31972630 @default.
- W3100258311 hasConcept C41008148 @default.
- W3100258311 hasConcept C50644808 @default.
- W3100258311 hasConcept C81363708 @default.
- W3100258311 hasConcept C86803240 @default.
- W3100258311 hasConcept C89600930 @default.
- W3100258311 hasConceptScore W3100258311C115961682 @default.
- W3100258311 hasConceptScore W3100258311C143724316 @default.
- W3100258311 hasConceptScore W3100258311C151730666 @default.
- W3100258311 hasConceptScore W3100258311C153180895 @default.
- W3100258311 hasConceptScore W3100258311C154945302 @default.
- W3100258311 hasConceptScore W3100258311C31972630 @default.
- W3100258311 hasConceptScore W3100258311C41008148 @default.
- W3100258311 hasConceptScore W3100258311C50644808 @default.
- W3100258311 hasConceptScore W3100258311C81363708 @default.
- W3100258311 hasConceptScore W3100258311C86803240 @default.
- W3100258311 hasConceptScore W3100258311C89600930 @default.
- W3100258311 hasLocation W31002583111 @default.
- W3100258311 hasLocation W31002583112 @default.
- W3100258311 hasLocation W31002583113 @default.
- W3100258311 hasLocation W31002583114 @default.
- W3100258311 hasLocation W31002583115 @default.
- W3100258311 hasOpenAccess W3100258311 @default.
- W3100258311 hasPrimaryLocation W31002583111 @default.
- W3100258311 hasRelatedWork W1669643531 @default.
- W3100258311 hasRelatedWork W2005437358 @default.
- W3100258311 hasRelatedWork W2008656436 @default.
- W3100258311 hasRelatedWork W2023558673 @default.
- W3100258311 hasRelatedWork W2039154422 @default.
- W3100258311 hasRelatedWork W2110230079 @default.
- W3100258311 hasRelatedWork W2122581818 @default.
- W3100258311 hasRelatedWork W2134924024 @default.
- W3100258311 hasRelatedWork W2517104666 @default.
- W3100258311 hasRelatedWork W2182382398 @default.
- W3100258311 isParatext "false" @default.
- W3100258311 isRetracted "false" @default.
- W3100258311 magId "3100258311" @default.
- W3100258311 workType "article" @default.