Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100261567> ?p ?o ?g. }
- W3100261567 endingPage "241" @default.
- W3100261567 startingPage "230" @default.
- W3100261567 abstract "The decomposition of a multivariate signal is an important tool for the analysis of measured or simulated data leading to possible detection of the relevant subspace or the sources of the signal. A new method - dynamical component analysis (DyCA) - is based on modeling the signal by a set of coupled ordinary differential equations. Its derivation and its features are presented in-depth. The corresponding algorithm is nearly as simple as principal component analysis (PCA). The results obtained by DyCA however yield a deeper insight into the underlying dynamics of the data. To illustrate the broad area of possible applications a set of examples of analyzing data by DyCA is presented - involving both measured EEG, motion and ECG data as well as data obtained from stochastic differential equations. Thereby our alternative tool for dimensionality reduction is compared to results obtained PCA and ICA and demonstrate the gain of this approach." @default.
- W3100261567 created "2020-11-23" @default.
- W3100261567 creator A5025861807 @default.
- W3100261567 creator A5027967416 @default.
- W3100261567 creator A5068391167 @default.
- W3100261567 creator A5079841180 @default.
- W3100261567 date "2020-01-01" @default.
- W3100261567 modified "2023-09-23" @default.
- W3100261567 title "Subspace Detection and Blind Source Separation of Multivariate Signals by Dynamical Component Analysis (DyCA)" @default.
- W3100261567 cites W1549386224 @default.
- W3100261567 cites W1584245551 @default.
- W3100261567 cites W1974041012 @default.
- W3100261567 cites W1976137296 @default.
- W3100261567 cites W1980666580 @default.
- W3100261567 cites W1999518711 @default.
- W3100261567 cites W2000982976 @default.
- W3100261567 cites W2003409024 @default.
- W3100261567 cites W2003516238 @default.
- W3100261567 cites W2006324882 @default.
- W3100261567 cites W2014356541 @default.
- W3100261567 cites W2016479629 @default.
- W3100261567 cites W2024523255 @default.
- W3100261567 cites W2057779744 @default.
- W3100261567 cites W2059043348 @default.
- W3100261567 cites W2060812569 @default.
- W3100261567 cites W2068910417 @default.
- W3100261567 cites W2072377062 @default.
- W3100261567 cites W2077791644 @default.
- W3100261567 cites W2083405917 @default.
- W3100261567 cites W2091278087 @default.
- W3100261567 cites W2123649031 @default.
- W3100261567 cites W2132904166 @default.
- W3100261567 cites W2176980361 @default.
- W3100261567 cites W2294798173 @default.
- W3100261567 cites W2299543730 @default.
- W3100261567 cites W2614622879 @default.
- W3100261567 cites W2626923521 @default.
- W3100261567 cites W2750574255 @default.
- W3100261567 cites W2773706250 @default.
- W3100261567 cites W2803464575 @default.
- W3100261567 cites W2891603149 @default.
- W3100261567 cites W2895386514 @default.
- W3100261567 cites W2898186212 @default.
- W3100261567 cites W2903485392 @default.
- W3100261567 cites W2913729147 @default.
- W3100261567 cites W2945976633 @default.
- W3100261567 cites W2951401720 @default.
- W3100261567 cites W2952497813 @default.
- W3100261567 cites W2958872067 @default.
- W3100261567 cites W3007341926 @default.
- W3100261567 cites W4205778870 @default.
- W3100261567 cites W4292023222 @default.
- W3100261567 cites W4376849658 @default.
- W3100261567 cites W3141408015 @default.
- W3100261567 doi "https://doi.org/10.1109/ojsp.2020.3038369" @default.
- W3100261567 hasPublicationYear "2020" @default.
- W3100261567 type Work @default.
- W3100261567 sameAs 3100261567 @default.
- W3100261567 citedByCount "4" @default.
- W3100261567 countsByYear W31002615672022 @default.
- W3100261567 countsByYear W31002615672023 @default.
- W3100261567 crossrefType "journal-article" @default.
- W3100261567 hasAuthorship W3100261567A5025861807 @default.
- W3100261567 hasAuthorship W3100261567A5027967416 @default.
- W3100261567 hasAuthorship W3100261567A5068391167 @default.
- W3100261567 hasAuthorship W3100261567A5079841180 @default.
- W3100261567 hasBestOaLocation W31002615671 @default.
- W3100261567 hasConcept C104267543 @default.
- W3100261567 hasConcept C105795698 @default.
- W3100261567 hasConcept C111030470 @default.
- W3100261567 hasConcept C11413529 @default.
- W3100261567 hasConcept C115961682 @default.
- W3100261567 hasConcept C120317606 @default.
- W3100261567 hasConcept C127162648 @default.
- W3100261567 hasConcept C134306372 @default.
- W3100261567 hasConcept C153180895 @default.
- W3100261567 hasConcept C154945302 @default.
- W3100261567 hasConcept C161584116 @default.
- W3100261567 hasConcept C177264268 @default.
- W3100261567 hasConcept C199360897 @default.
- W3100261567 hasConcept C27438332 @default.
- W3100261567 hasConcept C2777121530 @default.
- W3100261567 hasConcept C2779843651 @default.
- W3100261567 hasConcept C31258907 @default.
- W3100261567 hasConcept C32834561 @default.
- W3100261567 hasConcept C33923547 @default.
- W3100261567 hasConcept C41008148 @default.
- W3100261567 hasConcept C51432778 @default.
- W3100261567 hasConcept C51544822 @default.
- W3100261567 hasConcept C58489278 @default.
- W3100261567 hasConcept C70518039 @default.
- W3100261567 hasConcept C78045399 @default.
- W3100261567 hasConcept C84462506 @default.
- W3100261567 hasConcept C9390403 @default.
- W3100261567 hasConcept C99498987 @default.
- W3100261567 hasConceptScore W3100261567C104267543 @default.
- W3100261567 hasConceptScore W3100261567C105795698 @default.
- W3100261567 hasConceptScore W3100261567C111030470 @default.