Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100266980> ?p ?o ?g. }
- W3100266980 abstract "Abstract Growth rate is a near-universal selective pressure across microbial species. High growth rates require hundreds of metabolic enzymes, each with different nonlinear kinetics, to be precisely tuned within the bounds set by physicochemical constraints. Yet, the metabolic behaviour of many species is characterized by simple relations between growth rate, enzyme expression levels and metabolic rates. We asked if this simplicity could be the outcome of optimisation by evolution. Indeed, when the growth rate is maximized –in a static environment under mass-conservation and enzyme expression constraints– we prove mathematically that the resulting optimal metabolic flux distribution is described by a limited number of subnetworks, known as Elementary Flux Modes (EFMs). We show that, because EFMs are the minimal subnetworks leading to growth, a small active number automatically leads to the simple relations that are measured. We find that the maximal number of flux-carrying EFMs is determined only by the number of imposed constraints on enzyme expression, not by the size, kinetics or topology of the network. This minimal-EFM extremum principle is illustrated in a graphical framework, which explains qualitative changes in microbial behaviours, such as overflow metabolism and co-consumption, and provides a method for identification of the enzyme expression constraints that limit growth under the prevalent conditions. The extremum principle applies to all microorganisms that are selected for maximal growth rates under protein concentration constraints, for example the solvent capacities of cytosol, membrane or periplasmic space. Author summary The microbial genome encodes for a large network of enzyme-catalyzed reactions. The reaction rates depend on concentrations of enzymes and metabolites, which in turn depend on those rates. Cells face a number of biophysical constraints on enzyme expression, for example due to a limited membrane area or cytosolic volume. Considering this complexity and nonlinearity of metabolism, how is it possible, that experimental data can often be described by simple linear models? We show that it is evolution itself that selects for simplicity. When reproductive rate is maximised, the number of active independent metabolic pathways is bounded by the number of growth-limiting enzyme constraints, which is typically small. A small number of pathways automatically generates the measured simple relations. We identify the importance of growth-limiting constraints in shaping microbial behaviour, by focussing on their mechanistic nature. We demonstrate that overflow metabolism – an important phenomenon in bacteria, yeasts, and cancer cells – is caused by two constraints on enzyme expression. We derive experimental guidelines for constraint identification in microorganisms. Knowing these constraints leads to increased understanding of metabolism, and thereby to better predictions and more effective manipulations." @default.
- W3100266980 created "2020-11-23" @default.
- W3100266980 creator A5004505914 @default.
- W3100266980 creator A5035963268 @default.
- W3100266980 creator A5043007654 @default.
- W3100266980 creator A5047855050 @default.
- W3100266980 creator A5074917339 @default.
- W3100266980 date "2017-07-21" @default.
- W3100266980 modified "2023-10-03" @default.
- W3100266980 title "The number of active metabolic pathways is bounded by the number of cellular constraints at maximal metabolic rates" @default.
- W3100266980 cites W1621975707 @default.
- W3100266980 cites W1637936532 @default.
- W3100266980 cites W1758395617 @default.
- W3100266980 cites W1799738555 @default.
- W3100266980 cites W1967434028 @default.
- W3100266980 cites W1971144413 @default.
- W3100266980 cites W1985161570 @default.
- W3100266980 cites W1996529795 @default.
- W3100266980 cites W2002265556 @default.
- W3100266980 cites W2027257502 @default.
- W3100266980 cites W2029403511 @default.
- W3100266980 cites W2029422551 @default.
- W3100266980 cites W2029705967 @default.
- W3100266980 cites W2039230661 @default.
- W3100266980 cites W2043487490 @default.
- W3100266980 cites W2043509425 @default.
- W3100266980 cites W2048243530 @default.
- W3100266980 cites W2054087105 @default.
- W3100266980 cites W2057858265 @default.
- W3100266980 cites W2076477598 @default.
- W3100266980 cites W2077980171 @default.
- W3100266980 cites W2086033606 @default.
- W3100266980 cites W2098842699 @default.
- W3100266980 cites W2099257216 @default.
- W3100266980 cites W2100786572 @default.
- W3100266980 cites W2104187897 @default.
- W3100266980 cites W2104413400 @default.
- W3100266980 cites W2107275175 @default.
- W3100266980 cites W2111354165 @default.
- W3100266980 cites W2114071827 @default.
- W3100266980 cites W2114641752 @default.
- W3100266980 cites W2115606218 @default.
- W3100266980 cites W2122530127 @default.
- W3100266980 cites W2122860350 @default.
- W3100266980 cites W2133505559 @default.
- W3100266980 cites W2137828458 @default.
- W3100266980 cites W2152790231 @default.
- W3100266980 cites W2157457604 @default.
- W3100266980 cites W2168417771 @default.
- W3100266980 cites W2265299158 @default.
- W3100266980 cites W2416065856 @default.
- W3100266980 cites W2506127557 @default.
- W3100266980 cites W2508698766 @default.
- W3100266980 cites W2561548155 @default.
- W3100266980 cites W2563408447 @default.
- W3100266980 cites W2606897259 @default.
- W3100266980 cites W2614283331 @default.
- W3100266980 cites W2743063996 @default.
- W3100266980 cites W2756355811 @default.
- W3100266980 cites W2951001909 @default.
- W3100266980 doi "https://doi.org/10.1101/167171" @default.
- W3100266980 hasPublicationYear "2017" @default.
- W3100266980 type Work @default.
- W3100266980 sameAs 3100266980 @default.
- W3100266980 citedByCount "4" @default.
- W3100266980 countsByYear W31002669802018 @default.
- W3100266980 countsByYear W31002669802019 @default.
- W3100266980 countsByYear W31002669802020 @default.
- W3100266980 crossrefType "posted-content" @default.
- W3100266980 hasAuthorship W3100266980A5004505914 @default.
- W3100266980 hasAuthorship W3100266980A5035963268 @default.
- W3100266980 hasAuthorship W3100266980A5043007654 @default.
- W3100266980 hasAuthorship W3100266980A5047855050 @default.
- W3100266980 hasAuthorship W3100266980A5074917339 @default.
- W3100266980 hasBestOaLocation W31002669801 @default.
- W3100266980 hasConcept C101810790 @default.
- W3100266980 hasConcept C104317684 @default.
- W3100266980 hasConcept C134306372 @default.
- W3100266980 hasConcept C178790620 @default.
- W3100266980 hasConcept C181199279 @default.
- W3100266980 hasConcept C185592680 @default.
- W3100266980 hasConcept C186060115 @default.
- W3100266980 hasConcept C199360897 @default.
- W3100266980 hasConcept C201663137 @default.
- W3100266980 hasConcept C2524010 @default.
- W3100266980 hasConcept C2778312390 @default.
- W3100266980 hasConcept C33923547 @default.
- W3100266980 hasConcept C34388435 @default.
- W3100266980 hasConcept C41008148 @default.
- W3100266980 hasConcept C547475151 @default.
- W3100266980 hasConcept C55493867 @default.
- W3100266980 hasConcept C68709404 @default.
- W3100266980 hasConcept C86803240 @default.
- W3100266980 hasConcept C90559484 @default.
- W3100266980 hasConceptScore W3100266980C101810790 @default.
- W3100266980 hasConceptScore W3100266980C104317684 @default.
- W3100266980 hasConceptScore W3100266980C134306372 @default.
- W3100266980 hasConceptScore W3100266980C178790620 @default.
- W3100266980 hasConceptScore W3100266980C181199279 @default.
- W3100266980 hasConceptScore W3100266980C185592680 @default.