Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100272175> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3100272175 abstract "Let $G$ be a finite subgroup of $mathrm{Aut}_k(K(x_1, ldots, x_n))$ where $K/k$ is a finite field extension and $K(x_1,ldots,x_n)$ is the rational function field with $n$ variables over $K$. The action of $G$ on $K(x_1, ldots, x_n)$ is called quasi-monomial if it satisfies the following three conditions (i) $sigma(K)subset K$ for any $sigmain G$; (ii) $K^G=k$ where $K^G$ is the fixed field under the action of $G$; (iii) for any $sigmain G$ and $1 leq j leq n$, $sigma(x_j)=c_j(sigma)prod_{i=1}^n x_i^{a_{ij}}$ where $c_j(sigma)in K^times$ and $[a_{i,j}]_{1le i,j le n} in GL_n(mathbb{Z})$. A quasi-monomial action is called purely quasi-monomial if $c_j(sigma)=1$ for any $sigma in G$, any $1le jle n$. When $k=K$, a quasi-monomial action is called monomial. The main problem is that, under what situations, $K(x_1,ldots,x_n)^G$ is rational (= purely transcendental) over $k$. For $n=1$, the rationality problem was solved by Hoshi, Kang and Kitayama. For $n=2$, the problem was solved by Hajja when the action is monomial, by Voskresenskii when the action is faithful on $K$ and purely quasi-monomial, which is equivalent to the rationality problem of $n$-dimensional algebraic $k$-tori which split over $K$, and by Hoshi, Kang and Kitayama when the action is purely quasi-monomial. For $n=3$, the problem was solved by Hajja, Kang, Hoshi and Rikuna when the action is purely monomial, by Hoshi, Kitayama and Yamasaki when the action is monomial except for one case and by Kunyavskii when the action is faithful on $K$ and purely quasi-monomial. In this paper, we determine the rationality when $n=3$ and the action is purely quasi-monomial except for few cases. As an application, we will show the rationality of some $5$-dimensional purely monomial actions which are decomposable." @default.
- W3100272175 created "2020-11-23" @default.
- W3100272175 creator A5014289480 @default.
- W3100272175 creator A5039044067 @default.
- W3100272175 date "2020-04-01" @default.
- W3100272175 modified "2023-10-10" @default.
- W3100272175 title "Three-dimensional purely quasimonomial actions" @default.
- W3100272175 cites W12293852 @default.
- W3100272175 cites W1510708260 @default.
- W3100272175 cites W1550813843 @default.
- W3100272175 cites W1607820944 @default.
- W3100272175 cites W1980238396 @default.
- W3100272175 cites W1992867983 @default.
- W3100272175 cites W2007386239 @default.
- W3100272175 cites W2011882525 @default.
- W3100272175 cites W2014657074 @default.
- W3100272175 cites W2015274996 @default.
- W3100272175 cites W2022862250 @default.
- W3100272175 cites W2027139177 @default.
- W3100272175 cites W2029691923 @default.
- W3100272175 cites W2034145091 @default.
- W3100272175 cites W2036910290 @default.
- W3100272175 cites W2047795913 @default.
- W3100272175 cites W2050045276 @default.
- W3100272175 cites W2065875554 @default.
- W3100272175 cites W2072234950 @default.
- W3100272175 cites W2119509373 @default.
- W3100272175 cites W2155898240 @default.
- W3100272175 cites W2492893119 @default.
- W3100272175 cites W2962868159 @default.
- W3100272175 cites W2963695022 @default.
- W3100272175 cites W2963718213 @default.
- W3100272175 cites W2964101755 @default.
- W3100272175 cites W2964271407 @default.
- W3100272175 cites W2964310638 @default.
- W3100272175 cites W4231590562 @default.
- W3100272175 cites W428253049 @default.
- W3100272175 cites W2076211325 @default.
- W3100272175 doi "https://doi.org/10.1215/21562261-2019-0008" @default.
- W3100272175 hasPublicationYear "2020" @default.
- W3100272175 type Work @default.
- W3100272175 sameAs 3100272175 @default.
- W3100272175 citedByCount "2" @default.
- W3100272175 countsByYear W31002721752020 @default.
- W3100272175 countsByYear W31002721752021 @default.
- W3100272175 crossrefType "journal-article" @default.
- W3100272175 hasAuthorship W3100272175A5014289480 @default.
- W3100272175 hasAuthorship W3100272175A5039044067 @default.
- W3100272175 hasBestOaLocation W31002721752 @default.
- W3100272175 hasConcept C11252640 @default.
- W3100272175 hasConcept C114614502 @default.
- W3100272175 hasConcept C121332964 @default.
- W3100272175 hasConcept C202444582 @default.
- W3100272175 hasConcept C2778049214 @default.
- W3100272175 hasConcept C33923547 @default.
- W3100272175 hasConcept C62520636 @default.
- W3100272175 hasConcept C75190567 @default.
- W3100272175 hasConcept C9652623 @default.
- W3100272175 hasConceptScore W3100272175C11252640 @default.
- W3100272175 hasConceptScore W3100272175C114614502 @default.
- W3100272175 hasConceptScore W3100272175C121332964 @default.
- W3100272175 hasConceptScore W3100272175C202444582 @default.
- W3100272175 hasConceptScore W3100272175C2778049214 @default.
- W3100272175 hasConceptScore W3100272175C33923547 @default.
- W3100272175 hasConceptScore W3100272175C62520636 @default.
- W3100272175 hasConceptScore W3100272175C75190567 @default.
- W3100272175 hasConceptScore W3100272175C9652623 @default.
- W3100272175 hasIssue "1" @default.
- W3100272175 hasLocation W31002721751 @default.
- W3100272175 hasLocation W31002721752 @default.
- W3100272175 hasLocation W31002721753 @default.
- W3100272175 hasOpenAccess W3100272175 @default.
- W3100272175 hasPrimaryLocation W31002721751 @default.
- W3100272175 hasRelatedWork W1509594480 @default.
- W3100272175 hasRelatedWork W1653027350 @default.
- W3100272175 hasRelatedWork W1966623661 @default.
- W3100272175 hasRelatedWork W2039516134 @default.
- W3100272175 hasRelatedWork W2399505800 @default.
- W3100272175 hasRelatedWork W2788737482 @default.
- W3100272175 hasRelatedWork W2942288111 @default.
- W3100272175 hasRelatedWork W2951675266 @default.
- W3100272175 hasRelatedWork W3019115378 @default.
- W3100272175 hasRelatedWork W333749553 @default.
- W3100272175 hasVolume "60" @default.
- W3100272175 isParatext "false" @default.
- W3100272175 isRetracted "false" @default.
- W3100272175 magId "3100272175" @default.
- W3100272175 workType "article" @default.