Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100292078> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W3100292078 abstract "<p>The historical adoption of Bayesian approaches was limited by two main impediments: 1) the requirement for subjective prior information, and 2) the unavailability of analytical solutions for all but a few simple model forms. However, water quality modeling has always been subjective; selecting point values for model parameters, undertaking some &#8220;judicious diddling&#8221; to adjust them so that model output more closely matches observed data, and declaring the model to be &#8220;reasonable&#8221; is a long-standing practice. Water quality modeling in a Bayesian framework can actually reduce this subjectivity as it provides a rigorous and transparent approach for model parameter estimation. The second impediment, lack of analytical solutions, has for many applications, been largely reduced by the increasing availability of fast, cheap computing and concurrent evolution of efficient algorithms to sample the posterior distribution. In water quality modeling, however, the increasing computational availability may be reinforcing the dichotomy between probabilistic and &#8220;process-based&#8221; models. When I was a graduate student we couldn&#8217;t do both process and probability because computers weren&#8217;t fast enough. However, current computers unimaginably faster and we still rarely do both. It seems that our increasing computational capacity has been absorbed either in more complex and highly resolved, but still deterministic, process models, or more structurally complex probabilistic models (like hierarchical models) that are still light process. In principal, Bayes Theorem is quite general; any model could constitute the likelihood function, but practically, running Monte Carlo-based methods on simulation models that require hours, days, or even longer to run is not feasible. Developing models that capture the essential (and best understood processes) and that still allow a meaningful uncertainty analysis is an area that invites renewed attention.</p>" @default.
- W3100292078 created "2020-11-23" @default.
- W3100292078 creator A5036367436 @default.
- W3100292078 date "2020-03-23" @default.
- W3100292078 modified "2023-09-27" @default.
- W3100292078 title "Process-based or Probabilistic Models?" @default.
- W3100292078 doi "https://doi.org/10.5194/egusphere-egu2020-9925" @default.
- W3100292078 hasPublicationYear "2020" @default.
- W3100292078 type Work @default.
- W3100292078 sameAs 3100292078 @default.
- W3100292078 citedByCount "0" @default.
- W3100292078 crossrefType "posted-content" @default.
- W3100292078 hasAuthorship W3100292078A5036367436 @default.
- W3100292078 hasConcept C105795698 @default.
- W3100292078 hasConcept C107673813 @default.
- W3100292078 hasConcept C111472728 @default.
- W3100292078 hasConcept C111919701 @default.
- W3100292078 hasConcept C126255220 @default.
- W3100292078 hasConcept C138885662 @default.
- W3100292078 hasConcept C154945302 @default.
- W3100292078 hasConcept C160234255 @default.
- W3100292078 hasConcept C207201462 @default.
- W3100292078 hasConcept C2779530757 @default.
- W3100292078 hasConcept C2780505938 @default.
- W3100292078 hasConcept C33923547 @default.
- W3100292078 hasConcept C41008148 @default.
- W3100292078 hasConcept C49937458 @default.
- W3100292078 hasConcept C98045186 @default.
- W3100292078 hasConceptScore W3100292078C105795698 @default.
- W3100292078 hasConceptScore W3100292078C107673813 @default.
- W3100292078 hasConceptScore W3100292078C111472728 @default.
- W3100292078 hasConceptScore W3100292078C111919701 @default.
- W3100292078 hasConceptScore W3100292078C126255220 @default.
- W3100292078 hasConceptScore W3100292078C138885662 @default.
- W3100292078 hasConceptScore W3100292078C154945302 @default.
- W3100292078 hasConceptScore W3100292078C160234255 @default.
- W3100292078 hasConceptScore W3100292078C207201462 @default.
- W3100292078 hasConceptScore W3100292078C2779530757 @default.
- W3100292078 hasConceptScore W3100292078C2780505938 @default.
- W3100292078 hasConceptScore W3100292078C33923547 @default.
- W3100292078 hasConceptScore W3100292078C41008148 @default.
- W3100292078 hasConceptScore W3100292078C49937458 @default.
- W3100292078 hasConceptScore W3100292078C98045186 @default.
- W3100292078 hasLocation W31002920781 @default.
- W3100292078 hasOpenAccess W3100292078 @default.
- W3100292078 hasPrimaryLocation W31002920781 @default.
- W3100292078 hasRelatedWork W10844501 @default.
- W3100292078 hasRelatedWork W12515546 @default.
- W3100292078 hasRelatedWork W12938038 @default.
- W3100292078 hasRelatedWork W13341116 @default.
- W3100292078 hasRelatedWork W13393335 @default.
- W3100292078 hasRelatedWork W1807198 @default.
- W3100292078 hasRelatedWork W2929374 @default.
- W3100292078 hasRelatedWork W758187 @default.
- W3100292078 hasRelatedWork W8020788 @default.
- W3100292078 hasRelatedWork W8656678 @default.
- W3100292078 isParatext "false" @default.
- W3100292078 isRetracted "false" @default.
- W3100292078 magId "3100292078" @default.
- W3100292078 workType "article" @default.