Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100303558> ?p ?o ?g. }
- W3100303558 endingPage "7458" @default.
- W3100303558 startingPage "7449" @default.
- W3100303558 abstract "Limited by the total length, the total number of the antenna units as well as their topology, the radar images always suffered from the sidelobe/grating lobe which severely impacts the quality of the radar images. In this article, a convolutional neural network (CNN)-based radar image-enhancing method is proposed. Using the original radar images as the input samples and using their corresponding ideal radar images with no sidelobe/grating lobe as the label to train the CNN. A well-trained CNN can suppress the sidelobe/grating lobe in the radar images. The structure of the specific CNN, the generation methods of the samples and the labels, the training procedure of the CNN, as well as some other detailed implementation strategies are specifically illustrated in this article. The proposed method is utilized to suppress the sidelobe/grating lobe in both the simulated and real recorded radar images. Compared to other existing methods, the proposed method is with better sidelobe/grating lobe suppressing performance and better robustness." @default.
- W3100303558 created "2020-11-23" @default.
- W3100303558 creator A5006794114 @default.
- W3100303558 creator A5007286998 @default.
- W3100303558 creator A5028476009 @default.
- W3100303558 creator A5060903938 @default.
- W3100303558 creator A5072496496 @default.
- W3100303558 date "2021-09-01" @default.
- W3100303558 modified "2023-10-14" @default.
- W3100303558 title "Imaging Enhancement via CNN in MIMO Virtual Array-Based Radar" @default.
- W3100303558 cites W1992409670 @default.
- W3100303558 cites W2044896177 @default.
- W3100303558 cites W2083042020 @default.
- W3100303558 cites W2121077376 @default.
- W3100303558 cites W2151773045 @default.
- W3100303558 cites W2155684415 @default.
- W3100303558 cites W2162694686 @default.
- W3100303558 cites W2166116275 @default.
- W3100303558 cites W2188882808 @default.
- W3100303558 cites W2242218935 @default.
- W3100303558 cites W2317638011 @default.
- W3100303558 cites W2333034271 @default.
- W3100303558 cites W2563697538 @default.
- W3100303558 cites W2625710683 @default.
- W3100303558 cites W2759185414 @default.
- W3100303558 cites W2767912357 @default.
- W3100303558 cites W2773181550 @default.
- W3100303558 cites W2790471911 @default.
- W3100303558 cites W2793086004 @default.
- W3100303558 cites W2798991202 @default.
- W3100303558 cites W2803175304 @default.
- W3100303558 cites W2809373813 @default.
- W3100303558 cites W2810566158 @default.
- W3100303558 cites W2910053135 @default.
- W3100303558 cites W2920974768 @default.
- W3100303558 cites W2963470893 @default.
- W3100303558 cites W2964269625 @default.
- W3100303558 cites W2561824590 @default.
- W3100303558 doi "https://doi.org/10.1109/tgrs.2020.3035064" @default.
- W3100303558 hasPublicationYear "2021" @default.
- W3100303558 type Work @default.
- W3100303558 sameAs 3100303558 @default.
- W3100303558 citedByCount "10" @default.
- W3100303558 countsByYear W31003035582021 @default.
- W3100303558 countsByYear W31003035582022 @default.
- W3100303558 countsByYear W31003035582023 @default.
- W3100303558 crossrefType "journal-article" @default.
- W3100303558 hasAuthorship W3100303558A5006794114 @default.
- W3100303558 hasAuthorship W3100303558A5007286998 @default.
- W3100303558 hasAuthorship W3100303558A5028476009 @default.
- W3100303558 hasAuthorship W3100303558A5060903938 @default.
- W3100303558 hasAuthorship W3100303558A5072496496 @default.
- W3100303558 hasConcept C104317684 @default.
- W3100303558 hasConcept C109094680 @default.
- W3100303558 hasConcept C10929652 @default.
- W3100303558 hasConcept C120665830 @default.
- W3100303558 hasConcept C121332964 @default.
- W3100303558 hasConcept C127313418 @default.
- W3100303558 hasConcept C154945302 @default.
- W3100303558 hasConcept C166923610 @default.
- W3100303558 hasConcept C185592680 @default.
- W3100303558 hasConcept C21822782 @default.
- W3100303558 hasConcept C2777813233 @default.
- W3100303558 hasConcept C31972630 @default.
- W3100303558 hasConcept C41008148 @default.
- W3100303558 hasConcept C554190296 @default.
- W3100303558 hasConcept C55493867 @default.
- W3100303558 hasConcept C62649853 @default.
- W3100303558 hasConcept C63479239 @default.
- W3100303558 hasConcept C76155785 @default.
- W3100303558 hasConcept C81363708 @default.
- W3100303558 hasConceptScore W3100303558C104317684 @default.
- W3100303558 hasConceptScore W3100303558C109094680 @default.
- W3100303558 hasConceptScore W3100303558C10929652 @default.
- W3100303558 hasConceptScore W3100303558C120665830 @default.
- W3100303558 hasConceptScore W3100303558C121332964 @default.
- W3100303558 hasConceptScore W3100303558C127313418 @default.
- W3100303558 hasConceptScore W3100303558C154945302 @default.
- W3100303558 hasConceptScore W3100303558C166923610 @default.
- W3100303558 hasConceptScore W3100303558C185592680 @default.
- W3100303558 hasConceptScore W3100303558C21822782 @default.
- W3100303558 hasConceptScore W3100303558C2777813233 @default.
- W3100303558 hasConceptScore W3100303558C31972630 @default.
- W3100303558 hasConceptScore W3100303558C41008148 @default.
- W3100303558 hasConceptScore W3100303558C554190296 @default.
- W3100303558 hasConceptScore W3100303558C55493867 @default.
- W3100303558 hasConceptScore W3100303558C62649853 @default.
- W3100303558 hasConceptScore W3100303558C63479239 @default.
- W3100303558 hasConceptScore W3100303558C76155785 @default.
- W3100303558 hasConceptScore W3100303558C81363708 @default.
- W3100303558 hasFunder F4320321001 @default.
- W3100303558 hasIssue "9" @default.
- W3100303558 hasLocation W31003035581 @default.
- W3100303558 hasOpenAccess W3100303558 @default.
- W3100303558 hasPrimaryLocation W31003035581 @default.
- W3100303558 hasRelatedWork W1537845529 @default.
- W3100303558 hasRelatedWork W1585281834 @default.
- W3100303558 hasRelatedWork W2006246348 @default.