Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100336842> ?p ?o ?g. }
- W3100336842 abstract "Author(s): McAleer, Stephen; Fast, Alex; Xue, Yuntian; Seiler, Magdalene; Tang, William; Balu, Mihaela; Baldi, Pierre; Browne, Andrew W | Abstract: Two-photon excitation fluorescence (2PEF) allows imaging of tissue up to about one millimeter in thickness. Typically, reducing fluorescence excitation exposure reduces the quality of the image. However, using deep learning super resolution techniques, these low-resolution images can be converted to high-resolution images. This work explores improving human tissue imaging by applying deep learning to maximize image quality while reducing fluorescence excitation exposure. We analyze two methods: a method based on U-Net, and a patch-based regression method. Both methods are evaluated on a skin dataset and an eye dataset. The eye dataset includes 1200 paired high power and low power images of retinal organoids. The skin dataset contains multiple frames of each sample of human skin. High-resolution images were formed by averaging 70 frames for each sample and low-resolution images were formed by averaging the first 7 and 15 frames for each sample. The skin dataset includes 550 images for each of the resolution levels. We track two measures of performance for the two methods: mean squared error (MSE) and structural similarity index measure (SSIM). For the eye dataset, the patches method achieves an average MSE of 27,611 compared to 146,855 for the U-Net method, and an average SSIM of 0.636 compared to 0.607 for the U-Net method. For the skin dataset, the patches method achieves an average MSE of 3.768 compared to 4.032 for the U-Net method, and an average SSIM of 0.824 compared to 0.783 for the U-Net method. Despite better performance on image quality, the patches method is worse than the U-Net method when comparing the speed of prediction, taking 303 seconds to predict one image compared to less than one second for the U-Net method." @default.
- W3100336842 created "2020-11-23" @default.
- W3100336842 creator A5007937713 @default.
- W3100336842 creator A5015983327 @default.
- W3100336842 creator A5049517030 @default.
- W3100336842 creator A5064779744 @default.
- W3100336842 creator A5066195946 @default.
- W3100336842 creator A5072665087 @default.
- W3100336842 creator A5085189222 @default.
- W3100336842 creator A5088813478 @default.
- W3100336842 date "2020-11-10" @default.
- W3100336842 modified "2023-09-23" @default.
- W3100336842 title "Deep machine learning-assisted multiphoton microscopy to reduce light exposure and expedite imaging" @default.
- W3100336842 cites W1901129140 @default.
- W3100336842 cites W1967890875 @default.
- W3100336842 cites W2036505824 @default.
- W3100336842 cites W2076063813 @default.
- W3100336842 cites W2109759383 @default.
- W3100336842 cites W2118965865 @default.
- W3100336842 cites W2133665775 @default.
- W3100336842 cites W2167510172 @default.
- W3100336842 cites W2549415425 @default.
- W3100336842 cites W2557738935 @default.
- W3100336842 cites W2575657035 @default.
- W3100336842 cites W2599389083 @default.
- W3100336842 cites W2601810159 @default.
- W3100336842 cites W2604275021 @default.
- W3100336842 cites W2789242863 @default.
- W3100336842 cites W2799441468 @default.
- W3100336842 cites W2802159733 @default.
- W3100336842 cites W2806887204 @default.
- W3100336842 cites W2809596283 @default.
- W3100336842 cites W2890111314 @default.
- W3100336842 cites W2903779483 @default.
- W3100336842 cites W2904591139 @default.
- W3100336842 cites W2929375793 @default.
- W3100336842 cites W2950501364 @default.
- W3100336842 cites W3100115611 @default.
- W3100336842 hasPublicationYear "2020" @default.
- W3100336842 type Work @default.
- W3100336842 sameAs 3100336842 @default.
- W3100336842 citedByCount "0" @default.
- W3100336842 crossrefType "posted-content" @default.
- W3100336842 hasAuthorship W3100336842A5007937713 @default.
- W3100336842 hasAuthorship W3100336842A5015983327 @default.
- W3100336842 hasAuthorship W3100336842A5049517030 @default.
- W3100336842 hasAuthorship W3100336842A5064779744 @default.
- W3100336842 hasAuthorship W3100336842A5066195946 @default.
- W3100336842 hasAuthorship W3100336842A5072665087 @default.
- W3100336842 hasAuthorship W3100336842A5085189222 @default.
- W3100336842 hasAuthorship W3100336842A5088813478 @default.
- W3100336842 hasConcept C103278499 @default.
- W3100336842 hasConcept C105795698 @default.
- W3100336842 hasConcept C108583219 @default.
- W3100336842 hasConcept C115961682 @default.
- W3100336842 hasConcept C138268822 @default.
- W3100336842 hasConcept C139945424 @default.
- W3100336842 hasConcept C141239990 @default.
- W3100336842 hasConcept C153180895 @default.
- W3100336842 hasConcept C154945302 @default.
- W3100336842 hasConcept C185592680 @default.
- W3100336842 hasConcept C198531522 @default.
- W3100336842 hasConcept C205372480 @default.
- W3100336842 hasConcept C31972630 @default.
- W3100336842 hasConcept C33923547 @default.
- W3100336842 hasConcept C41008148 @default.
- W3100336842 hasConcept C43617362 @default.
- W3100336842 hasConcept C55020928 @default.
- W3100336842 hasConceptScore W3100336842C103278499 @default.
- W3100336842 hasConceptScore W3100336842C105795698 @default.
- W3100336842 hasConceptScore W3100336842C108583219 @default.
- W3100336842 hasConceptScore W3100336842C115961682 @default.
- W3100336842 hasConceptScore W3100336842C138268822 @default.
- W3100336842 hasConceptScore W3100336842C139945424 @default.
- W3100336842 hasConceptScore W3100336842C141239990 @default.
- W3100336842 hasConceptScore W3100336842C153180895 @default.
- W3100336842 hasConceptScore W3100336842C154945302 @default.
- W3100336842 hasConceptScore W3100336842C185592680 @default.
- W3100336842 hasConceptScore W3100336842C198531522 @default.
- W3100336842 hasConceptScore W3100336842C205372480 @default.
- W3100336842 hasConceptScore W3100336842C31972630 @default.
- W3100336842 hasConceptScore W3100336842C33923547 @default.
- W3100336842 hasConceptScore W3100336842C41008148 @default.
- W3100336842 hasConceptScore W3100336842C43617362 @default.
- W3100336842 hasConceptScore W3100336842C55020928 @default.
- W3100336842 hasLocation W31003368421 @default.
- W3100336842 hasOpenAccess W3100336842 @default.
- W3100336842 hasPrimaryLocation W31003368421 @default.
- W3100336842 hasRelatedWork W1995906683 @default.
- W3100336842 hasRelatedWork W2058880390 @default.
- W3100336842 hasRelatedWork W2151022898 @default.
- W3100336842 hasRelatedWork W2599414549 @default.
- W3100336842 hasRelatedWork W2809226111 @default.
- W3100336842 hasRelatedWork W2955991597 @default.
- W3100336842 hasRelatedWork W2975395079 @default.
- W3100336842 hasRelatedWork W2998376473 @default.
- W3100336842 hasRelatedWork W2999151753 @default.
- W3100336842 hasRelatedWork W3023712588 @default.
- W3100336842 hasRelatedWork W3043997605 @default.
- W3100336842 hasRelatedWork W3089783114 @default.