Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100340954> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3100340954 endingPage "1273" @default.
- W3100340954 startingPage "1266" @default.
- W3100340954 abstract "Across a range of manufacturing contexts, automated quality control has been gaining significant attention because it offers competitive advantages such as cost reduction, high accuracy in defect detection and system stability over time. Although computer vision has been historically the most commonly applied method in this context, novel approaches such as deep learning have recently become more frequent and are used in cases where traditional methods cannot be applied. Because of the surface texture and curvature of many metallic parts, detection of defects such as scratches, cracks and dents can be challenging for traditional computer vision methods. In this study, an image acquisition system supported by a special lighting device that provides processable images from an extremely reflective cylindrical metallic surface has been developed. Multiple images obtained from a single lateral line of the surface, which is rotated at a specified speed, are combined using photometric stereo and given as input to a convolutional neural network that is employed to classify defective and non-defective samples. The results obtained from this method are close to 98.5% accurate." @default.
- W3100340954 created "2020-11-23" @default.
- W3100340954 creator A5008597469 @default.
- W3100340954 creator A5014018188 @default.
- W3100340954 creator A5014525613 @default.
- W3100340954 creator A5032925115 @default.
- W3100340954 creator A5063386391 @default.
- W3100340954 creator A5083827897 @default.
- W3100340954 creator A5084067145 @default.
- W3100340954 date "2020-12-01" @default.
- W3100340954 modified "2023-09-27" @default.
- W3100340954 title "Online metallic surface defect detection using deep learning" @default.
- W3100340954 cites W1975089519 @default.
- W3100340954 cites W1981759979 @default.
- W3100340954 cites W1998709053 @default.
- W3100340954 cites W2050118544 @default.
- W3100340954 cites W2078087367 @default.
- W3100340954 cites W2444611651 @default.
- W3100340954 cites W2519063703 @default.
- W3100340954 cites W2551403519 @default.
- W3100340954 cites W2557913446 @default.
- W3100340954 cites W2736775721 @default.
- W3100340954 cites W2787696513 @default.
- W3100340954 cites W2795319996 @default.
- W3100340954 cites W2887975641 @default.
- W3100340954 cites W2899750794 @default.
- W3100340954 cites W2900198492 @default.
- W3100340954 cites W2924461368 @default.
- W3100340954 cites W2941999397 @default.
- W3100340954 doi "https://doi.org/10.1680/jemmr.20.00197" @default.
- W3100340954 hasPublicationYear "2020" @default.
- W3100340954 type Work @default.
- W3100340954 sameAs 3100340954 @default.
- W3100340954 citedByCount "1" @default.
- W3100340954 countsByYear W31003409542022 @default.
- W3100340954 crossrefType "journal-article" @default.
- W3100340954 hasAuthorship W3100340954A5008597469 @default.
- W3100340954 hasAuthorship W3100340954A5014018188 @default.
- W3100340954 hasAuthorship W3100340954A5014525613 @default.
- W3100340954 hasAuthorship W3100340954A5032925115 @default.
- W3100340954 hasAuthorship W3100340954A5063386391 @default.
- W3100340954 hasAuthorship W3100340954A5083827897 @default.
- W3100340954 hasAuthorship W3100340954A5084067145 @default.
- W3100340954 hasConcept C108583219 @default.
- W3100340954 hasConcept C115961682 @default.
- W3100340954 hasConcept C151730666 @default.
- W3100340954 hasConcept C154945302 @default.
- W3100340954 hasConcept C192562407 @default.
- W3100340954 hasConcept C195065555 @default.
- W3100340954 hasConcept C2524010 @default.
- W3100340954 hasConcept C2776799497 @default.
- W3100340954 hasConcept C2779343474 @default.
- W3100340954 hasConcept C2781195486 @default.
- W3100340954 hasConcept C31972630 @default.
- W3100340954 hasConcept C33923547 @default.
- W3100340954 hasConcept C41008148 @default.
- W3100340954 hasConcept C50644808 @default.
- W3100340954 hasConcept C81363708 @default.
- W3100340954 hasConcept C86803240 @default.
- W3100340954 hasConceptScore W3100340954C108583219 @default.
- W3100340954 hasConceptScore W3100340954C115961682 @default.
- W3100340954 hasConceptScore W3100340954C151730666 @default.
- W3100340954 hasConceptScore W3100340954C154945302 @default.
- W3100340954 hasConceptScore W3100340954C192562407 @default.
- W3100340954 hasConceptScore W3100340954C195065555 @default.
- W3100340954 hasConceptScore W3100340954C2524010 @default.
- W3100340954 hasConceptScore W3100340954C2776799497 @default.
- W3100340954 hasConceptScore W3100340954C2779343474 @default.
- W3100340954 hasConceptScore W3100340954C2781195486 @default.
- W3100340954 hasConceptScore W3100340954C31972630 @default.
- W3100340954 hasConceptScore W3100340954C33923547 @default.
- W3100340954 hasConceptScore W3100340954C41008148 @default.
- W3100340954 hasConceptScore W3100340954C50644808 @default.
- W3100340954 hasConceptScore W3100340954C81363708 @default.
- W3100340954 hasConceptScore W3100340954C86803240 @default.
- W3100340954 hasIssue "4" @default.
- W3100340954 hasLocation W31003409541 @default.
- W3100340954 hasOpenAccess W3100340954 @default.
- W3100340954 hasPrimaryLocation W31003409541 @default.
- W3100340954 hasRelatedWork W2731899572 @default.
- W3100340954 hasRelatedWork W2999805992 @default.
- W3100340954 hasRelatedWork W3011074480 @default.
- W3100340954 hasRelatedWork W3116150086 @default.
- W3100340954 hasRelatedWork W3133861977 @default.
- W3100340954 hasRelatedWork W3166467183 @default.
- W3100340954 hasRelatedWork W4200173597 @default.
- W3100340954 hasRelatedWork W4291897433 @default.
- W3100340954 hasRelatedWork W4312417841 @default.
- W3100340954 hasRelatedWork W4321369474 @default.
- W3100340954 hasVolume "9" @default.
- W3100340954 isParatext "false" @default.
- W3100340954 isRetracted "false" @default.
- W3100340954 magId "3100340954" @default.
- W3100340954 workType "article" @default.