Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100344218> ?p ?o ?g. }
- W3100344218 abstract "The emergence of machine learning methods in quantum chemistry provides new methods to revisit an old problem: Can the predictive accuracy of electronic structure calculations be decoupled from their numerical bottlenecks? Previous attempts to answer this question have, among other methods, given rise to semi-empirical quantum chemistry in minimal basis representation. We present an adaptation of the recently proposed SchNet for Orbitals (SchNOrb) deep convolutional neural network model [K. T. Schütt et al., Nat. Commun. 10, 5024 (2019)] for electronic wave functions in an optimized quasi-atomic minimal basis representation. For five organic molecules ranging from 5 to 13 heavy atoms, the model accurately predicts molecular orbital energies and wave functions and provides access to derived properties for chemical bonding analysis. Particularly for larger molecules, the model outperforms the original atomic-orbital-based SchNOrb method in terms of accuracy and scaling. We conclude by discussing the future potential of this approach in quantum chemical workflows." @default.
- W3100344218 created "2020-11-23" @default.
- W3100344218 creator A5011992388 @default.
- W3100344218 creator A5016855366 @default.
- W3100344218 creator A5060053549 @default.
- W3100344218 creator A5084363234 @default.
- W3100344218 creator A5087150694 @default.
- W3100344218 date "2020-07-28" @default.
- W3100344218 modified "2023-10-14" @default.
- W3100344218 title "A deep neural network for molecular wave functions in quasi-atomic minimal basis representation" @default.
- W3100344218 cites W1494761193 @default.
- W3100344218 cites W1968792263 @default.
- W3100344218 cites W1975997599 @default.
- W3100344218 cites W1981368803 @default.
- W3100344218 cites W1988091937 @default.
- W3100344218 cites W2000413114 @default.
- W3100344218 cites W2017618268 @default.
- W3100344218 cites W2022696619 @default.
- W3100344218 cites W2025444507 @default.
- W3100344218 cites W2029075848 @default.
- W3100344218 cites W2030454524 @default.
- W3100344218 cites W2041292236 @default.
- W3100344218 cites W2042938036 @default.
- W3100344218 cites W2067718414 @default.
- W3100344218 cites W2077973224 @default.
- W3100344218 cites W2083415705 @default.
- W3100344218 cites W2114828655 @default.
- W3100344218 cites W2198575971 @default.
- W3100344218 cites W2515090858 @default.
- W3100344218 cites W2527189750 @default.
- W3100344218 cites W2574215409 @default.
- W3100344218 cites W2582187633 @default.
- W3100344218 cites W2585152223 @default.
- W3100344218 cites W2620687153 @default.
- W3100344218 cites W2757878424 @default.
- W3100344218 cites W2759635967 @default.
- W3100344218 cites W2778051509 @default.
- W3100344218 cites W2797402103 @default.
- W3100344218 cites W2806843381 @default.
- W3100344218 cites W2884430236 @default.
- W3100344218 cites W2885190592 @default.
- W3100344218 cites W2891365537 @default.
- W3100344218 cites W2923537029 @default.
- W3100344218 cites W2963731249 @default.
- W3100344218 cites W2968558338 @default.
- W3100344218 cites W2984234582 @default.
- W3100344218 cites W3010488723 @default.
- W3100344218 cites W3016113754 @default.
- W3100344218 cites W3098341684 @default.
- W3100344218 cites W3099950071 @default.
- W3100344218 cites W3101465336 @default.
- W3100344218 cites W3103502300 @default.
- W3100344218 cites W3104114886 @default.
- W3100344218 doi "https://doi.org/10.1063/5.0012911" @default.
- W3100344218 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32752663" @default.
- W3100344218 hasPublicationYear "2020" @default.
- W3100344218 type Work @default.
- W3100344218 sameAs 3100344218 @default.
- W3100344218 citedByCount "34" @default.
- W3100344218 countsByYear W31003442182020 @default.
- W3100344218 countsByYear W31003442182021 @default.
- W3100344218 countsByYear W31003442182022 @default.
- W3100344218 countsByYear W31003442182023 @default.
- W3100344218 crossrefType "journal-article" @default.
- W3100344218 hasAuthorship W3100344218A5011992388 @default.
- W3100344218 hasAuthorship W3100344218A5016855366 @default.
- W3100344218 hasAuthorship W3100344218A5060053549 @default.
- W3100344218 hasAuthorship W3100344218A5084363234 @default.
- W3100344218 hasAuthorship W3100344218A5087150694 @default.
- W3100344218 hasBestOaLocation W31003442182 @default.
- W3100344218 hasConcept C113603373 @default.
- W3100344218 hasConcept C121332964 @default.
- W3100344218 hasConcept C121864883 @default.
- W3100344218 hasConcept C12426560 @default.
- W3100344218 hasConcept C139358910 @default.
- W3100344218 hasConcept C147120987 @default.
- W3100344218 hasConcept C147597530 @default.
- W3100344218 hasConcept C154945302 @default.
- W3100344218 hasConcept C177212765 @default.
- W3100344218 hasConcept C17744445 @default.
- W3100344218 hasConcept C185592680 @default.
- W3100344218 hasConcept C189394030 @default.
- W3100344218 hasConcept C199539241 @default.
- W3100344218 hasConcept C22994065 @default.
- W3100344218 hasConcept C2524010 @default.
- W3100344218 hasConcept C2776359362 @default.
- W3100344218 hasConcept C32909587 @default.
- W3100344218 hasConcept C33923547 @default.
- W3100344218 hasConcept C41008148 @default.
- W3100344218 hasConcept C5917680 @default.
- W3100344218 hasConcept C62520636 @default.
- W3100344218 hasConcept C77088390 @default.
- W3100344218 hasConcept C81363708 @default.
- W3100344218 hasConcept C84114770 @default.
- W3100344218 hasConcept C86025842 @default.
- W3100344218 hasConcept C93275456 @default.
- W3100344218 hasConcept C94625758 @default.
- W3100344218 hasConcept C99844830 @default.
- W3100344218 hasConceptScore W3100344218C113603373 @default.
- W3100344218 hasConceptScore W3100344218C121332964 @default.