Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100344247> ?p ?o ?g. }
- W3100344247 endingPage "306" @default.
- W3100344247 startingPage "291" @default.
- W3100344247 abstract "We construct a two-parameter family of models for self-collimated, magnetized outflows from accretion disks. As in previous magnetocentrifugal wind solutions, a flow at zero initial poloidal speed leaves the surface of a disk in Kepler rotation about a central star, and it is accelerated and redirected toward the pole by rotating, helical magnetic fields that thread the disk. At large distances from the disk, the flow streamlines asymptote to wrap around the surfaces of nested cylinders, with velocity v and magnetic field B directed in the axial () and toroidal () directions. In the asymptotic regime, the velocity secularly decreases with cylindrical radius R from the inside to the outside of the flow because successive streamlines originate in the circumstellar disk in successively shallower portions of the stellar potential. In contrast to previous disk wind modeling, we have explicitly implemented the cylindrical asymptotic boundary condition to examine the consequences for flow dynamics. The present solutions are developed within the context of r-self-similar flows, such that v, the density ρ, and B scale with spherical radius r as v ∝ r-1/2, ρ ∝ r-q, and B ∝ r-(1+q)/2; q must be smaller than unity in order to achieve cylindrical collimation. We self-consistently obtain the shapes of magnetic field lines and the θ-dependence of all flow quantities. The solutions are characterized by q together with the ratios RA/R1 and R0/R1, where for a given streamline, R0 is the radius of its footpoint in the disk, RA is the cylindrical radius where the flow makes an Alfvén transition, and R1 is its final asymptotic cylindrical radius. For given q and R0/R1, RA/R1 must be found as an eigenvalue such that the Alfvén transition is made smoothly. In the solutions we have found, the asymptotic poloidal speed vz on any streamline is typically just a few tenths of the Kepler speed ΩR0 at the corresponding disk footpoint, while the asymptotic rotation speed vφ may be a few tenths to several tenths of ΩR0. The asymptotic toroidal Alfvén speed vA,φ = Bφ/(4πρ)1/2 is, however, a few times ΩR0; thus the outflows remain magnetically dominated, never making a fast-MHD transition. We discuss the implications of these models for interpretations of observed optical jets and molecular outflows from young stellar systems, and we suggest that the difficulty of achieving strong collimation in vector velocity simultaneously with a final speed comparable to ΩR0 argues against isolated jets and in favor of models with broader winds." @default.
- W3100344247 created "2020-11-23" @default.
- W3100344247 creator A5017189819 @default.
- W3100344247 date "1997-09-01" @default.
- W3100344247 modified "2023-10-17" @default.
- W3100344247 title "Self‐similar Magnetocentrifugal Disk Winds with Cylindrical Asymptotics" @default.
- W3100344247 cites W1504675327 @default.
- W3100344247 cites W1510244401 @default.
- W3100344247 cites W1540881828 @default.
- W3100344247 cites W1963968588 @default.
- W3100344247 cites W1966870157 @default.
- W3100344247 cites W1968943327 @default.
- W3100344247 cites W1978149914 @default.
- W3100344247 cites W1980100166 @default.
- W3100344247 cites W1985272010 @default.
- W3100344247 cites W1987813269 @default.
- W3100344247 cites W1988699805 @default.
- W3100344247 cites W1989222644 @default.
- W3100344247 cites W2001672475 @default.
- W3100344247 cites W2007234212 @default.
- W3100344247 cites W2010580468 @default.
- W3100344247 cites W2010616547 @default.
- W3100344247 cites W2015203507 @default.
- W3100344247 cites W2016164487 @default.
- W3100344247 cites W2018031919 @default.
- W3100344247 cites W2020925792 @default.
- W3100344247 cites W2020993166 @default.
- W3100344247 cites W2023344645 @default.
- W3100344247 cites W2027066204 @default.
- W3100344247 cites W2028577351 @default.
- W3100344247 cites W2028998331 @default.
- W3100344247 cites W2036179433 @default.
- W3100344247 cites W2039783734 @default.
- W3100344247 cites W2042965945 @default.
- W3100344247 cites W2043698998 @default.
- W3100344247 cites W2057885156 @default.
- W3100344247 cites W2060598420 @default.
- W3100344247 cites W2068837566 @default.
- W3100344247 cites W2069889573 @default.
- W3100344247 cites W2072032439 @default.
- W3100344247 cites W2074186250 @default.
- W3100344247 cites W2077225663 @default.
- W3100344247 cites W2077537502 @default.
- W3100344247 cites W2079377895 @default.
- W3100344247 cites W2084937430 @default.
- W3100344247 cites W2090035005 @default.
- W3100344247 cites W2096594817 @default.
- W3100344247 cites W2100758318 @default.
- W3100344247 cites W2150115749 @default.
- W3100344247 cites W2156621121 @default.
- W3100344247 cites W2326941706 @default.
- W3100344247 cites W4210958776 @default.
- W3100344247 cites W4243811307 @default.
- W3100344247 doi "https://doi.org/10.1086/304513" @default.
- W3100344247 hasPublicationYear "1997" @default.
- W3100344247 type Work @default.
- W3100344247 sameAs 3100344247 @default.
- W3100344247 citedByCount "76" @default.
- W3100344247 countsByYear W31003442472013 @default.
- W3100344247 countsByYear W31003442472014 @default.
- W3100344247 countsByYear W31003442472016 @default.
- W3100344247 countsByYear W31003442472017 @default.
- W3100344247 countsByYear W31003442472018 @default.
- W3100344247 countsByYear W31003442472020 @default.
- W3100344247 countsByYear W31003442472021 @default.
- W3100344247 countsByYear W31003442472022 @default.
- W3100344247 countsByYear W31003442472023 @default.
- W3100344247 crossrefType "journal-article" @default.
- W3100344247 hasAuthorship W3100344247A5017189819 @default.
- W3100344247 hasBestOaLocation W31003442471 @default.
- W3100344247 hasConcept C115260700 @default.
- W3100344247 hasConcept C121332964 @default.
- W3100344247 hasConcept C15001198 @default.
- W3100344247 hasConcept C178635117 @default.
- W3100344247 hasConcept C2524010 @default.
- W3100344247 hasConcept C2776401274 @default.
- W3100344247 hasConcept C31532427 @default.
- W3100344247 hasConcept C33923547 @default.
- W3100344247 hasConcept C38652104 @default.
- W3100344247 hasConcept C41008148 @default.
- W3100344247 hasConcept C44870925 @default.
- W3100344247 hasConcept C5594486 @default.
- W3100344247 hasConcept C57879066 @default.
- W3100344247 hasConcept C58315980 @default.
- W3100344247 hasConcept C60439489 @default.
- W3100344247 hasConcept C62520636 @default.
- W3100344247 hasConcept C74650414 @default.
- W3100344247 hasConcept C82706917 @default.
- W3100344247 hasConceptScore W3100344247C115260700 @default.
- W3100344247 hasConceptScore W3100344247C121332964 @default.
- W3100344247 hasConceptScore W3100344247C15001198 @default.
- W3100344247 hasConceptScore W3100344247C178635117 @default.
- W3100344247 hasConceptScore W3100344247C2524010 @default.
- W3100344247 hasConceptScore W3100344247C2776401274 @default.
- W3100344247 hasConceptScore W3100344247C31532427 @default.
- W3100344247 hasConceptScore W3100344247C33923547 @default.
- W3100344247 hasConceptScore W3100344247C38652104 @default.
- W3100344247 hasConceptScore W3100344247C41008148 @default.