Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100348673> ?p ?o ?g. }
- W3100348673 endingPage "102261" @default.
- W3100348673 startingPage "102261" @default.
- W3100348673 abstract "In recent years, Unoccupied Aircraft Systems (UAS) have been used to capture information on forest structure in unprecedented detail. Pioneering studies in this field have shown that high spatial resolution images and Light Detecting And Ranging (LiDAR) data captured from these platforms provide detailed information describing the dominant tree elements of canopy cover and biomass. However, to date, few studies have investigated the arrangement of vegetation elements that contribute directly to fire propagation in UAS LiDAR point clouds; that is the surface, near-surface, elevated and intermediate-canopy vegetation. This paper begins to address this gap in the literature by exploring the use of image-based and LiDAR 3D representations collected using UAS platforms, for describing forest structure properties. Airborne and terrestrial 3D datasets were captured in a dry sclerophyll forest in south-eastern Australia. Results indicate that UAS LiDAR point clouds contain information that can describe fuel properties in all strata. Similar estimates of canopy cover (TLS: 68.27% and UAS LiDAR: 64.20%) and sub-canopy cover (Elevated cover TLS: 44.94%, UAS LiDAR: 32.27%, combined surface and near-surface cover TLS: 96.10% UAS LiDAR: 93.56%) to TLS were achieved using this technology. It was also shown that the UAS SfM photogrammetric technique significantly under performed in the representation of the canopy and below canopy structure (canopy cover - 20.31%, elevated cover 10.09%). This caused errors to be propagated in the estimate of heights in the elevated fuel layer (TLS: 0.51 m, UAS LiDAR: 0.34 m, UAS SfM: 0.15 m). A method for classifying fuel hazard layers is also presented which identifies vegetation connectivity. These results indicate that information describing the below canopy vertical structure is present within the UAS LiDAR point clouds and can be exploited through this novel classification approach for fire hazard assessment. For fire prone countries, this type of information can provide important insight into forest fuels and the potential fire behaviour and impact of fire under different scenarios." @default.
- W3100348673 created "2020-11-23" @default.
- W3100348673 creator A5003438954 @default.
- W3100348673 creator A5015992143 @default.
- W3100348673 creator A5060441449 @default.
- W3100348673 creator A5062850904 @default.
- W3100348673 creator A5065202731 @default.
- W3100348673 creator A5071269262 @default.
- W3100348673 date "2021-03-01" @default.
- W3100348673 modified "2023-10-15" @default.
- W3100348673 title "A comparison of terrestrial and UAS sensors for measuring fuel hazard in a dry sclerophyll forest" @default.
- W3100348673 cites W1534686497 @default.
- W3100348673 cites W1969314351 @default.
- W3100348673 cites W1981527205 @default.
- W3100348673 cites W1983818779 @default.
- W3100348673 cites W1987064464 @default.
- W3100348673 cites W1988625682 @default.
- W3100348673 cites W2018533520 @default.
- W3100348673 cites W2018820549 @default.
- W3100348673 cites W2019856832 @default.
- W3100348673 cites W2030066785 @default.
- W3100348673 cites W2031576835 @default.
- W3100348673 cites W2051586552 @default.
- W3100348673 cites W2060444277 @default.
- W3100348673 cites W2070193374 @default.
- W3100348673 cites W2084520859 @default.
- W3100348673 cites W2091688953 @default.
- W3100348673 cites W2097947367 @default.
- W3100348673 cites W2101799631 @default.
- W3100348673 cites W2104854304 @default.
- W3100348673 cites W2122450383 @default.
- W3100348673 cites W2129201358 @default.
- W3100348673 cites W2136245122 @default.
- W3100348673 cites W2146751368 @default.
- W3100348673 cites W2149920440 @default.
- W3100348673 cites W2153296924 @default.
- W3100348673 cites W2155171932 @default.
- W3100348673 cites W2168129336 @default.
- W3100348673 cites W2169232608 @default.
- W3100348673 cites W2170049772 @default.
- W3100348673 cites W2179206012 @default.
- W3100348673 cites W220946188 @default.
- W3100348673 cites W2296685749 @default.
- W3100348673 cites W2313255437 @default.
- W3100348673 cites W2492422582 @default.
- W3100348673 cites W2511405802 @default.
- W3100348673 cites W2521158973 @default.
- W3100348673 cites W2560530255 @default.
- W3100348673 cites W2566688177 @default.
- W3100348673 cites W2585255211 @default.
- W3100348673 cites W2606043483 @default.
- W3100348673 cites W2606100861 @default.
- W3100348673 cites W2607994032 @default.
- W3100348673 cites W2617295820 @default.
- W3100348673 cites W2754487926 @default.
- W3100348673 cites W2765920222 @default.
- W3100348673 cites W2768000522 @default.
- W3100348673 cites W2768730870 @default.
- W3100348673 cites W2787518617 @default.
- W3100348673 cites W2883812019 @default.
- W3100348673 cites W2888238698 @default.
- W3100348673 cites W2900062227 @default.
- W3100348673 cites W2900480611 @default.
- W3100348673 cites W2909597226 @default.
- W3100348673 cites W2914433259 @default.
- W3100348673 cites W2923900842 @default.
- W3100348673 cites W2924496886 @default.
- W3100348673 cites W2931168078 @default.
- W3100348673 cites W2971872054 @default.
- W3100348673 cites W2972547511 @default.
- W3100348673 cites W2991061114 @default.
- W3100348673 cites W2992817841 @default.
- W3100348673 cites W3008705442 @default.
- W3100348673 cites W3016118819 @default.
- W3100348673 cites W3023383448 @default.
- W3100348673 cites W3080219514 @default.
- W3100348673 cites W342079421 @default.
- W3100348673 doi "https://doi.org/10.1016/j.jag.2020.102261" @default.
- W3100348673 hasPublicationYear "2021" @default.
- W3100348673 type Work @default.
- W3100348673 sameAs 3100348673 @default.
- W3100348673 citedByCount "10" @default.
- W3100348673 countsByYear W31003486732021 @default.
- W3100348673 countsByYear W31003486732022 @default.
- W3100348673 countsByYear W31003486732023 @default.
- W3100348673 crossrefType "journal-article" @default.
- W3100348673 hasAuthorship W3100348673A5003438954 @default.
- W3100348673 hasAuthorship W3100348673A5015992143 @default.
- W3100348673 hasAuthorship W3100348673A5060441449 @default.
- W3100348673 hasAuthorship W3100348673A5062850904 @default.
- W3100348673 hasAuthorship W3100348673A5065202731 @default.
- W3100348673 hasAuthorship W3100348673A5071269262 @default.
- W3100348673 hasBestOaLocation W31003486731 @default.
- W3100348673 hasConcept C101000010 @default.
- W3100348673 hasConcept C131979681 @default.
- W3100348673 hasConcept C139518226 @default.
- W3100348673 hasConcept C166957645 @default.
- W3100348673 hasConcept C205649164 @default.