Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100356980> ?p ?o ?g. }
- W3100356980 abstract "1 Abstract Background Consecutive testing of single nucleotide polymorphisms (SNPs) is usually employed to identify genetic variants associated with complex traits. Ideally one should model all covariates in unison, but most existing analysis methods for genome-wide association studies (GWAS) perform only univariate regression. Results We extend and efficiently implement iterative hard thresholding (IHT) for multiple regression, treating all SNPs simultaneously. Our extensions accommodate generalized linear models (GLMs), prior information on genetic variants, and grouping of variants. In our simulations, IHT recovers up to 30% more true predictors than SNP-by-SNP association testing, and exhibits a 2 to 3 orders of magnitude decrease in false positive rates compared to lasso regression. We also test IHT on the UK Biobank hypertension phenotypes and the Northern Finland Birth Cohort of 1966 cardiovascular phenotypes. We find that IHT scales to the large datasets of contemporary human genetics and recovers the plausible genetic variants identified by previous studies. Conclusions Our real data analysis and simulation studies suggest that IHT can (a) recover highly correlated predictors, (b) avoid over-fitting, (c) deliver better true positive and false positive rates than either marginal testing or lasso regression, (d) recover unbiased regression coefficients, (e) exploit prior information and group-sparsity and (f) be used with biobank sized data sets. Although these advances are studied for GWAS inference, our extensions are pertinent to other regression problems with large numbers of predictors." @default.
- W3100356980 created "2020-11-23" @default.
- W3100356980 creator A5013824247 @default.
- W3100356980 creator A5014775249 @default.
- W3100356980 creator A5056673072 @default.
- W3100356980 creator A5060348530 @default.
- W3100356980 creator A5070269135 @default.
- W3100356980 creator A5074715316 @default.
- W3100356980 creator A5088575740 @default.
- W3100356980 date "2019-07-11" @default.
- W3100356980 modified "2023-09-23" @default.
- W3100356980 title "Iterative Hard Thresholding in GWAS: Generalized Linear Models, Prior Weights, and Double Sparsity" @default.
- W3100356980 cites W1585644470 @default.
- W3100356980 cites W189211379 @default.
- W3100356980 cites W1965169081 @default.
- W3100356980 cites W1966775465 @default.
- W3100356980 cites W1977520307 @default.
- W3100356980 cites W2013569035 @default.
- W3100356980 cites W2024834494 @default.
- W3100356980 cites W2042421957 @default.
- W3100356980 cites W2051616601 @default.
- W3100356980 cites W2060308631 @default.
- W3100356980 cites W2071759640 @default.
- W3100356980 cites W2072973944 @default.
- W3100356980 cites W2082704080 @default.
- W3100356980 cites W2099085143 @default.
- W3100356980 cites W2104093114 @default.
- W3100356980 cites W2104111843 @default.
- W3100356980 cites W2106398669 @default.
- W3100356980 cites W2120575449 @default.
- W3100356980 cites W2122189635 @default.
- W3100356980 cites W2123023890 @default.
- W3100356980 cites W2131265509 @default.
- W3100356980 cites W2133379615 @default.
- W3100356980 cites W2135046866 @default.
- W3100356980 cites W2144357790 @default.
- W3100356980 cites W2289917018 @default.
- W3100356980 cites W2562162676 @default.
- W3100356980 cites W2582019778 @default.
- W3100356980 cites W2725988230 @default.
- W3100356980 cites W2763810423 @default.
- W3100356980 cites W2768267412 @default.
- W3100356980 cites W2797293309 @default.
- W3100356980 cites W2808144139 @default.
- W3100356980 cites W2914532656 @default.
- W3100356980 cites W2914690976 @default.
- W3100356980 cites W3104715737 @default.
- W3100356980 cites W3105543546 @default.
- W3100356980 cites W3106108064 @default.
- W3100356980 cites W4247591450 @default.
- W3100356980 cites W4288625073 @default.
- W3100356980 cites W4300858224 @default.
- W3100356980 doi "https://doi.org/10.1101/697755" @default.
- W3100356980 hasPublicationYear "2019" @default.
- W3100356980 type Work @default.
- W3100356980 sameAs 3100356980 @default.
- W3100356980 citedByCount "0" @default.
- W3100356980 crossrefType "posted-content" @default.
- W3100356980 hasAuthorship W3100356980A5013824247 @default.
- W3100356980 hasAuthorship W3100356980A5014775249 @default.
- W3100356980 hasAuthorship W3100356980A5056673072 @default.
- W3100356980 hasAuthorship W3100356980A5060348530 @default.
- W3100356980 hasAuthorship W3100356980A5070269135 @default.
- W3100356980 hasAuthorship W3100356980A5074715316 @default.
- W3100356980 hasAuthorship W3100356980A5088575740 @default.
- W3100356980 hasBestOaLocation W31003569801 @default.
- W3100356980 hasConcept C104317684 @default.
- W3100356980 hasConcept C105795698 @default.
- W3100356980 hasConcept C106208931 @default.
- W3100356980 hasConcept C116567970 @default.
- W3100356980 hasConcept C119043178 @default.
- W3100356980 hasConcept C135763542 @default.
- W3100356980 hasConcept C136764020 @default.
- W3100356980 hasConcept C151956035 @default.
- W3100356980 hasConcept C152877465 @default.
- W3100356980 hasConcept C153209595 @default.
- W3100356980 hasConcept C161584116 @default.
- W3100356980 hasConcept C186413461 @default.
- W3100356980 hasConcept C199163554 @default.
- W3100356980 hasConcept C33923547 @default.
- W3100356980 hasConcept C37616216 @default.
- W3100356980 hasConcept C41008148 @default.
- W3100356980 hasConcept C48921125 @default.
- W3100356980 hasConcept C54355233 @default.
- W3100356980 hasConcept C60644358 @default.
- W3100356980 hasConcept C83546350 @default.
- W3100356980 hasConcept C86803240 @default.
- W3100356980 hasConceptScore W3100356980C104317684 @default.
- W3100356980 hasConceptScore W3100356980C105795698 @default.
- W3100356980 hasConceptScore W3100356980C106208931 @default.
- W3100356980 hasConceptScore W3100356980C116567970 @default.
- W3100356980 hasConceptScore W3100356980C119043178 @default.
- W3100356980 hasConceptScore W3100356980C135763542 @default.
- W3100356980 hasConceptScore W3100356980C136764020 @default.
- W3100356980 hasConceptScore W3100356980C151956035 @default.
- W3100356980 hasConceptScore W3100356980C152877465 @default.
- W3100356980 hasConceptScore W3100356980C153209595 @default.
- W3100356980 hasConceptScore W3100356980C161584116 @default.
- W3100356980 hasConceptScore W3100356980C186413461 @default.
- W3100356980 hasConceptScore W3100356980C199163554 @default.