Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100364760> ?p ?o ?g. }
- W3100364760 abstract "A model involving Gaussian processes (GPs) is introduced to simultaneously handle multi-task learning, clustering, and prediction for multiple functional data. This procedure acts as a model-based clustering method for functional data as well as a learning step for subsequent predictions for new tasks. The model is instantiated as a mixture of multi-task GPs with common mean processes. A variational EM algorithm is derived for dealing with the optimisation of the hyper-parameters along with the hyper-posteriors' estimation of latent variables and processes. We establish explicit formulas for integrating the mean processes and the latent clustering variables within a predictive distribution, accounting for uncertainty on both aspects. This distribution is defined as a mixture of cluster-specific GP predictions, which enhances the performances when dealing with group-structured data. The model handles irregular grid of observations and offers different hypotheses on the covariance structure for sharing additional information across tasks. The performances on both clustering and prediction tasks are assessed through various simulated scenarios and real datasets. The overall algorithm, called MagmaClust, is publicly available as an R package." @default.
- W3100364760 created "2020-11-23" @default.
- W3100364760 creator A5007273362 @default.
- W3100364760 creator A5027880163 @default.
- W3100364760 creator A5049093533 @default.
- W3100364760 creator A5070312562 @default.
- W3100364760 date "2022-01-01" @default.
- W3100364760 modified "2023-10-02" @default.
- W3100364760 title "Cluster-Specific Predictions with Multi-Task Gaussian Processes" @default.
- W3100364760 cites W136174036 @default.
- W3100364760 cites W137285897 @default.
- W3100364760 cites W1506806321 @default.
- W3100364760 cites W1512149552 @default.
- W3100364760 cites W164706946 @default.
- W3100364760 cites W1654787807 @default.
- W3100364760 cites W1663973292 @default.
- W3100364760 cites W1726810423 @default.
- W3100364760 cites W196162695 @default.
- W3100364760 cites W1966129222 @default.
- W3100364760 cites W1983908352 @default.
- W3100364760 cites W1983957710 @default.
- W3100364760 cites W2005126631 @default.
- W3100364760 cites W2007463795 @default.
- W3100364760 cites W2010529280 @default.
- W3100364760 cites W2017606789 @default.
- W3100364760 cites W2024182604 @default.
- W3100364760 cites W2051669046 @default.
- W3100364760 cites W2069297020 @default.
- W3100364760 cites W2069570104 @default.
- W3100364760 cites W2099768828 @default.
- W3100364760 cites W2105869342 @default.
- W3100364760 cites W2107386393 @default.
- W3100364760 cites W2113145584 @default.
- W3100364760 cites W2115566948 @default.
- W3100364760 cites W2119595900 @default.
- W3100364760 cites W2130819374 @default.
- W3100364760 cites W2139259843 @default.
- W3100364760 cites W2142635246 @default.
- W3100364760 cites W2146260999 @default.
- W3100364760 cites W2146611938 @default.
- W3100364760 cites W2148522164 @default.
- W3100364760 cites W2150097763 @default.
- W3100364760 cites W2166107799 @default.
- W3100364760 cites W2168175751 @default.
- W3100364760 cites W2172085063 @default.
- W3100364760 cites W2296319761 @default.
- W3100364760 cites W2316564661 @default.
- W3100364760 cites W2803640632 @default.
- W3100364760 cites W2885685774 @default.
- W3100364760 cites W2913340405 @default.
- W3100364760 cites W2952677397 @default.
- W3100364760 cites W2963566966 @default.
- W3100364760 cites W3021971632 @default.
- W3100364760 cites W3034299904 @default.
- W3100364760 cites W3045135582 @default.
- W3100364760 cites W3098553720 @default.
- W3100364760 cites W824892955 @default.
- W3100364760 hasPublicationYear "2022" @default.
- W3100364760 type Work @default.
- W3100364760 sameAs 3100364760 @default.
- W3100364760 citedByCount "0" @default.
- W3100364760 crossrefType "journal-article" @default.
- W3100364760 hasAuthorship W3100364760A5007273362 @default.
- W3100364760 hasAuthorship W3100364760A5027880163 @default.
- W3100364760 hasAuthorship W3100364760A5049093533 @default.
- W3100364760 hasAuthorship W3100364760A5070312562 @default.
- W3100364760 hasBestOaLocation W31003647601 @default.
- W3100364760 hasConcept C127413603 @default.
- W3100364760 hasConcept C147597530 @default.
- W3100364760 hasConcept C163716315 @default.
- W3100364760 hasConcept C164866538 @default.
- W3100364760 hasConcept C185592680 @default.
- W3100364760 hasConcept C199360897 @default.
- W3100364760 hasConcept C201995342 @default.
- W3100364760 hasConcept C2780451532 @default.
- W3100364760 hasConcept C41008148 @default.
- W3100364760 hasConcept C61326573 @default.
- W3100364760 hasConceptScore W3100364760C127413603 @default.
- W3100364760 hasConceptScore W3100364760C147597530 @default.
- W3100364760 hasConceptScore W3100364760C163716315 @default.
- W3100364760 hasConceptScore W3100364760C164866538 @default.
- W3100364760 hasConceptScore W3100364760C185592680 @default.
- W3100364760 hasConceptScore W3100364760C199360897 @default.
- W3100364760 hasConceptScore W3100364760C201995342 @default.
- W3100364760 hasConceptScore W3100364760C2780451532 @default.
- W3100364760 hasConceptScore W3100364760C41008148 @default.
- W3100364760 hasConceptScore W3100364760C61326573 @default.
- W3100364760 hasLocation W31003647601 @default.
- W3100364760 hasLocation W31003647602 @default.
- W3100364760 hasOpenAccess W3100364760 @default.
- W3100364760 hasPrimaryLocation W31003647601 @default.
- W3100364760 hasRelatedWork W1964286703 @default.
- W3100364760 hasRelatedWork W2081647779 @default.
- W3100364760 hasRelatedWork W2169866437 @default.
- W3100364760 hasRelatedWork W2358471166 @default.
- W3100364760 hasRelatedWork W2366792704 @default.
- W3100364760 hasRelatedWork W3207926686 @default.
- W3100364760 hasRelatedWork W4237750775 @default.
- W3100364760 hasRelatedWork W4298202464 @default.
- W3100364760 hasRelatedWork W4300508182 @default.