Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100366710> ?p ?o ?g. }
- W3100366710 endingPage "172988142097227" @default.
- W3100366710 startingPage "172988142097227" @default.
- W3100366710 abstract "Autonomous vehicles include driverless, self-driving and robotic cars, and other platforms capable of sensing and interacting with its environment and navigating without human help. On the other hand, semiautonomous vehicles achieve partial realization of autonomy with human intervention, for example, in driver-assisted vehicles. Autonomous vehicles first interact with their surrounding using mounted sensors. Typically, visual sensors are used to acquire images, and computer vision techniques, signal processing, machine learning, and other techniques are applied to acquire, process, and extract information. The control subsystem interprets sensory information to identify appropriate navigation path to its destination and action plan to carry out tasks. Feedbacks are also elicited from the environment to improve upon its behavior. To increase sensing accuracy, autonomous vehicles are equipped with many sensors [light detection and ranging (LiDARs), infrared, sonar, inertial measurement units, etc.], as well as communication subsystem. Autonomous vehicles face several challenges such as unknown environments, blind spots (unseen views), non-line-of-sight scenarios, poor performance of sensors due to weather conditions, sensor errors, false alarms, limited energy, limited computational resources, algorithmic complexity, human–machine communications, size, and weight constraints. To tackle these problems, several algorithmic approaches have been implemented covering design of sensors, processing, control, and navigation. The review seeks to provide up-to-date information on the requirements, algorithms, and main challenges in the use of machine vision–based techniques for navigation and control in autonomous vehicles. An application using land-based vehicle as an Internet of Thing-enabled platform for pedestrian detection and tracking is also presented." @default.
- W3100366710 created "2020-11-23" @default.
- W3100366710 creator A5078310418 @default.
- W3100366710 date "2020-11-01" @default.
- W3100366710 modified "2023-09-27" @default.
- W3100366710 title "A review of algorithms and techniques for image-based recognition and inference in mobile robotic systems" @default.
- W3100366710 cites W1594676769 @default.
- W3100366710 cites W1749494163 @default.
- W3100366710 cites W1977655452 @default.
- W3100366710 cites W1978818721 @default.
- W3100366710 cites W1980452149 @default.
- W3100366710 cites W1993931798 @default.
- W3100366710 cites W2006912660 @default.
- W3100366710 cites W2015245929 @default.
- W3100366710 cites W2026131180 @default.
- W3100366710 cites W2029143333 @default.
- W3100366710 cites W2029986528 @default.
- W3100366710 cites W2031454541 @default.
- W3100366710 cites W2037399936 @default.
- W3100366710 cites W2042752297 @default.
- W3100366710 cites W2044762091 @default.
- W3100366710 cites W2049981393 @default.
- W3100366710 cites W2066916495 @default.
- W3100366710 cites W2080823437 @default.
- W3100366710 cites W2095537868 @default.
- W3100366710 cites W2096634291 @default.
- W3100366710 cites W2098554149 @default.
- W3100366710 cites W2100495367 @default.
- W3100366710 cites W2100548006 @default.
- W3100366710 cites W2104266187 @default.
- W3100366710 cites W2105850748 @default.
- W3100366710 cites W2110744759 @default.
- W3100366710 cites W2110886576 @default.
- W3100366710 cites W2118929276 @default.
- W3100366710 cites W2127242093 @default.
- W3100366710 cites W2131040183 @default.
- W3100366710 cites W2136929315 @default.
- W3100366710 cites W2145339207 @default.
- W3100366710 cites W2147980938 @default.
- W3100366710 cites W2148239836 @default.
- W3100366710 cites W2150839555 @default.
- W3100366710 cites W2156546852 @default.
- W3100366710 cites W2158242043 @default.
- W3100366710 cites W2163409259 @default.
- W3100366710 cites W2165238223 @default.
- W3100366710 cites W2168819643 @default.
- W3100366710 cites W2329739548 @default.
- W3100366710 cites W2398849219 @default.
- W3100366710 cites W2462633786 @default.
- W3100366710 cites W2480770133 @default.
- W3100366710 cites W2482726005 @default.
- W3100366710 cites W2511733843 @default.
- W3100366710 cites W2567075875 @default.
- W3100366710 cites W2586361965 @default.
- W3100366710 cites W2586992378 @default.
- W3100366710 cites W2609795132 @default.
- W3100366710 cites W2624442909 @default.
- W3100366710 cites W2744976044 @default.
- W3100366710 cites W2751735948 @default.
- W3100366710 cites W2765929558 @default.
- W3100366710 cites W2767471303 @default.
- W3100366710 cites W2767800299 @default.
- W3100366710 cites W2782977076 @default.
- W3100366710 cites W2783538964 @default.
- W3100366710 cites W2804618220 @default.
- W3100366710 cites W2885984081 @default.
- W3100366710 cites W2893375469 @default.
- W3100366710 cites W2906254211 @default.
- W3100366710 cites W2910096450 @default.
- W3100366710 cites W2912215027 @default.
- W3100366710 cites W2955338161 @default.
- W3100366710 cites W2983772250 @default.
- W3100366710 cites W3100789280 @default.
- W3100366710 cites W3124420883 @default.
- W3100366710 cites W35543783 @default.
- W3100366710 cites W4230559279 @default.
- W3100366710 cites W4249821637 @default.
- W3100366710 cites W4297970710 @default.
- W3100366710 doi "https://doi.org/10.1177/1729881420972278" @default.
- W3100366710 hasPublicationYear "2020" @default.
- W3100366710 type Work @default.
- W3100366710 sameAs 3100366710 @default.
- W3100366710 citedByCount "4" @default.
- W3100366710 countsByYear W31003667102022 @default.
- W3100366710 countsByYear W31003667102023 @default.
- W3100366710 crossrefType "journal-article" @default.
- W3100366710 hasAuthorship W3100366710A5078310418 @default.
- W3100366710 hasBestOaLocation W31003667101 @default.
- W3100366710 hasConcept C111919701 @default.
- W3100366710 hasConcept C154945302 @default.
- W3100366710 hasConcept C31972630 @default.
- W3100366710 hasConcept C41008148 @default.
- W3100366710 hasConcept C79403827 @default.
- W3100366710 hasConcept C98045186 @default.
- W3100366710 hasConceptScore W3100366710C111919701 @default.
- W3100366710 hasConceptScore W3100366710C154945302 @default.
- W3100366710 hasConceptScore W3100366710C31972630 @default.
- W3100366710 hasConceptScore W3100366710C41008148 @default.