Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100376722> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3100376722 endingPage "739" @default.
- W3100376722 startingPage "685" @default.
- W3100376722 abstract "This is the third part of a four-paper sequence, which establishes the Threshold Conjecture and the Soliton-Bubbling versus Scattering Dichotomy for the energy critical hyperbolic Yang–Mills equation in the (4 + 1)-dimensional Minkowski space-time. This paper provides basic tools for considering the dynamics of the hyperbolic Yang–Mills equation in an arbitrary topological class at an optimal regularity. We generalize the standard notion of a topological class of connections on $${mathbb{R}^{d}}$$ , defined via a pullback to the one-point compactification $${mathbb{S}^{d} = mathbb{R}^{d} cup {infty}}$$ , to rough connections with curvature in the critical space $${L^{frac{d}{2}}(mathbb{R}^{d})}$$ . Moreover, we provide excision and extension techniques for the Yang–Mills constraint (or Gauss) equation, which allow us to efficiently localize Yang–Mills initial data sets. Combined with the results in the previous paper (Oh and Tataru in The hyperbolic Yang–Mills equation in the caloric gauge. Local well-posedness and control of energy dispersed solutions, 2017. arXiv:1709.09332 ), we obtain local well-posedness of the hyperbolic Yang–Mills equation on $${mathbb{R}^{1+d}}$$ $${(d geq 4)}$$ in an arbitrary topological class at optimal regularity in the temporal gauge (where finite speed of propagation holds). In addition, in the energy subcritical case d = 3, our techniques provide an alternative proof of the classical finite energy global well-posedness theorem of Klainerman–Machedon (Ann. Math. (2) 142(1):39–119, 1995. https://doi.org/10.2307/2118611 ), while also removing the smallness assumption in the temporal-gauge local well-posedness theorem of Tao (J. Differ. Equ. 189(2):366–382, 2003. https://doi.org/10.1016/S0022-0396(02)00177-8 ). Although this paper is a part of a larger sequence, the materials presented in this paper may be of independent and general interest. For this reason, we have organized the paper so that it may be read separately from the sequence." @default.
- W3100376722 created "2020-11-23" @default.
- W3100376722 creator A5058431163 @default.
- W3100376722 creator A5064420961 @default.
- W3100376722 date "2018-07-17" @default.
- W3100376722 modified "2023-10-09" @default.
- W3100376722 title "The Hyperbolic Yang–Mills Equation for Connections in an Arbitrary Topological Class" @default.
- W3100376722 cites W1502307409 @default.
- W3100376722 cites W1575174108 @default.
- W3100376722 cites W1607490296 @default.
- W3100376722 cites W1968281448 @default.
- W3100376722 cites W1973065182 @default.
- W3100376722 cites W1986028464 @default.
- W3100376722 cites W2000288860 @default.
- W3100376722 cites W2004446062 @default.
- W3100376722 cites W2021411658 @default.
- W3100376722 cites W2032317001 @default.
- W3100376722 cites W2035275755 @default.
- W3100376722 cites W2072301756 @default.
- W3100376722 cites W2103162959 @default.
- W3100376722 cites W2166643479 @default.
- W3100376722 cites W2167675215 @default.
- W3100376722 cites W2962787274 @default.
- W3100376722 cites W2963815732 @default.
- W3100376722 cites W35421105 @default.
- W3100376722 cites W4246446534 @default.
- W3100376722 doi "https://doi.org/10.1007/s00220-018-3205-x" @default.
- W3100376722 hasPublicationYear "2018" @default.
- W3100376722 type Work @default.
- W3100376722 sameAs 3100376722 @default.
- W3100376722 citedByCount "7" @default.
- W3100376722 countsByYear W31003767222019 @default.
- W3100376722 countsByYear W31003767222020 @default.
- W3100376722 countsByYear W31003767222021 @default.
- W3100376722 countsByYear W31003767222022 @default.
- W3100376722 crossrefType "journal-article" @default.
- W3100376722 hasAuthorship W3100376722A5058431163 @default.
- W3100376722 hasAuthorship W3100376722A5064420961 @default.
- W3100376722 hasBestOaLocation W31003767222 @default.
- W3100376722 hasConcept C114614502 @default.
- W3100376722 hasConcept C134306372 @default.
- W3100376722 hasConcept C181830111 @default.
- W3100376722 hasConcept C184720557 @default.
- W3100376722 hasConcept C202444582 @default.
- W3100376722 hasConcept C27008004 @default.
- W3100376722 hasConcept C2780990831 @default.
- W3100376722 hasConcept C33923547 @default.
- W3100376722 hasConcept C37914503 @default.
- W3100376722 hasConcept C40375134 @default.
- W3100376722 hasConcept C79464548 @default.
- W3100376722 hasConcept C83677898 @default.
- W3100376722 hasConceptScore W3100376722C114614502 @default.
- W3100376722 hasConceptScore W3100376722C134306372 @default.
- W3100376722 hasConceptScore W3100376722C181830111 @default.
- W3100376722 hasConceptScore W3100376722C184720557 @default.
- W3100376722 hasConceptScore W3100376722C202444582 @default.
- W3100376722 hasConceptScore W3100376722C27008004 @default.
- W3100376722 hasConceptScore W3100376722C2780990831 @default.
- W3100376722 hasConceptScore W3100376722C33923547 @default.
- W3100376722 hasConceptScore W3100376722C37914503 @default.
- W3100376722 hasConceptScore W3100376722C40375134 @default.
- W3100376722 hasConceptScore W3100376722C79464548 @default.
- W3100376722 hasConceptScore W3100376722C83677898 @default.
- W3100376722 hasFunder F4320306164 @default.
- W3100376722 hasFunder F4320309634 @default.
- W3100376722 hasFunder F4320315859 @default.
- W3100376722 hasFunder F4320332172 @default.
- W3100376722 hasIssue "2" @default.
- W3100376722 hasLocation W31003767221 @default.
- W3100376722 hasLocation W31003767222 @default.
- W3100376722 hasLocation W31003767223 @default.
- W3100376722 hasOpenAccess W3100376722 @default.
- W3100376722 hasPrimaryLocation W31003767221 @default.
- W3100376722 hasRelatedWork W1967387093 @default.
- W3100376722 hasRelatedWork W1975307515 @default.
- W3100376722 hasRelatedWork W2005905552 @default.
- W3100376722 hasRelatedWork W2060828997 @default.
- W3100376722 hasRelatedWork W2064526425 @default.
- W3100376722 hasRelatedWork W2075517363 @default.
- W3100376722 hasRelatedWork W2166005730 @default.
- W3100376722 hasRelatedWork W2377013778 @default.
- W3100376722 hasRelatedWork W2759105324 @default.
- W3100376722 hasRelatedWork W4308613846 @default.
- W3100376722 hasVolume "365" @default.
- W3100376722 isParatext "false" @default.
- W3100376722 isRetracted "false" @default.
- W3100376722 magId "3100376722" @default.
- W3100376722 workType "article" @default.