Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100378427> ?p ?o ?g. }
- W3100378427 endingPage "1081" @default.
- W3100378427 startingPage "1029" @default.
- W3100378427 abstract "We establish a new connection between the theory of totally positive Grassmannians and the theory of $mathtt M$-curves using the finite--gap theory for solitons of the KP equation. Here and in the following KP equation denotes the Kadomtsev-Petviashvili 2 equation, which is the first flow from the KP hierarchy. We also assume that all KP times are real. We associate to any point of the real totally positive Grassmannian $Gr^{TP} (N,M)$ a reducible curve which is a rational degeneration of an $mathtt M$--curve of minimal genus $g=N(M-N)$, and we reconstruct the real algebraic-geometric data 'a la Krichever for the underlying real bounded multiline KP soliton solutions. From this construction it follows that these multiline solitons can be explicitly obtained by degenerating regular real finite-gap solutions corresponding to smooth $ M$-curves. In our approach we rule the addition of each new rational component to the spectral curve via an elementary Darboux transformation which corresponds to a section of a specific projection $Gr^{TP} (r+1,M-N+r+1)mapsto Gr^{TP} (r,M-N+r)$." @default.
- W3100378427 created "2020-11-23" @default.
- W3100378427 creator A5046314591 @default.
- W3100378427 creator A5046684160 @default.
- W3100378427 date "2018-03-26" @default.
- W3100378427 modified "2023-09-23" @default.
- W3100378427 title "Rational Degenerations of $${{mathtt{M}}}$$ M -Curves, Totally Positive Grassmannians and KP2-Solitons" @default.
- W3100378427 cites W1537957332 @default.
- W3100378427 cites W1562785810 @default.
- W3100378427 cites W1623071293 @default.
- W3100378427 cites W1637606347 @default.
- W3100378427 cites W1764048552 @default.
- W3100378427 cites W1813685111 @default.
- W3100378427 cites W1898987871 @default.
- W3100378427 cites W1941582291 @default.
- W3100378427 cites W1978861770 @default.
- W3100378427 cites W1987909429 @default.
- W3100378427 cites W2008470737 @default.
- W3100378427 cites W2009290057 @default.
- W3100378427 cites W2011624720 @default.
- W3100378427 cites W2021331271 @default.
- W3100378427 cites W2022443517 @default.
- W3100378427 cites W2052322855 @default.
- W3100378427 cites W2064109025 @default.
- W3100378427 cites W2095168522 @default.
- W3100378427 cites W2101698846 @default.
- W3100378427 cites W2105239653 @default.
- W3100378427 cites W2140714435 @default.
- W3100378427 cites W2156872351 @default.
- W3100378427 cites W2258126206 @default.
- W3100378427 cites W2330720619 @default.
- W3100378427 cites W2347012371 @default.
- W3100378427 cites W2594757317 @default.
- W3100378427 cites W2609568744 @default.
- W3100378427 cites W2963180040 @default.
- W3100378427 cites W2963353666 @default.
- W3100378427 cites W2964062462 @default.
- W3100378427 cites W2964272847 @default.
- W3100378427 cites W3101116144 @default.
- W3100378427 cites W3101549267 @default.
- W3100378427 cites W3106342660 @default.
- W3100378427 cites W3114217660 @default.
- W3100378427 cites W4232650420 @default.
- W3100378427 cites W4246149624 @default.
- W3100378427 cites W4248974416 @default.
- W3100378427 cites W595846807 @default.
- W3100378427 doi "https://doi.org/10.1007/s00220-018-3123-y" @default.
- W3100378427 hasPublicationYear "2018" @default.
- W3100378427 type Work @default.
- W3100378427 sameAs 3100378427 @default.
- W3100378427 citedByCount "16" @default.
- W3100378427 countsByYear W31003784272015 @default.
- W3100378427 countsByYear W31003784272018 @default.
- W3100378427 countsByYear W31003784272019 @default.
- W3100378427 countsByYear W31003784272020 @default.
- W3100378427 countsByYear W31003784272021 @default.
- W3100378427 countsByYear W31003784272022 @default.
- W3100378427 countsByYear W31003784272023 @default.
- W3100378427 crossrefType "journal-article" @default.
- W3100378427 hasAuthorship W3100378427A5046314591 @default.
- W3100378427 hasAuthorship W3100378427A5046684160 @default.
- W3100378427 hasBestOaLocation W31003784272 @default.
- W3100378427 hasConcept C112698675 @default.
- W3100378427 hasConcept C11413529 @default.
- W3100378427 hasConcept C114614502 @default.
- W3100378427 hasConcept C121332964 @default.
- W3100378427 hasConcept C13355873 @default.
- W3100378427 hasConcept C134306372 @default.
- W3100378427 hasConcept C144133560 @default.
- W3100378427 hasConcept C157369684 @default.
- W3100378427 hasConcept C158622935 @default.
- W3100378427 hasConcept C159785203 @default.
- W3100378427 hasConcept C162929932 @default.
- W3100378427 hasConcept C202444582 @default.
- W3100378427 hasConcept C207043602 @default.
- W3100378427 hasConcept C2524010 @default.
- W3100378427 hasConcept C2780129039 @default.
- W3100378427 hasConcept C33923547 @default.
- W3100378427 hasConcept C34388435 @default.
- W3100378427 hasConcept C37914503 @default.
- W3100378427 hasConcept C38349280 @default.
- W3100378427 hasConcept C53744967 @default.
- W3100378427 hasConcept C57493831 @default.
- W3100378427 hasConcept C59822182 @default.
- W3100378427 hasConcept C62520636 @default.
- W3100378427 hasConcept C86803240 @default.
- W3100378427 hasConcept C87651913 @default.
- W3100378427 hasConcept C9376300 @default.
- W3100378427 hasConcept C93779851 @default.
- W3100378427 hasConceptScore W3100378427C112698675 @default.
- W3100378427 hasConceptScore W3100378427C11413529 @default.
- W3100378427 hasConceptScore W3100378427C114614502 @default.
- W3100378427 hasConceptScore W3100378427C121332964 @default.
- W3100378427 hasConceptScore W3100378427C13355873 @default.
- W3100378427 hasConceptScore W3100378427C134306372 @default.
- W3100378427 hasConceptScore W3100378427C144133560 @default.
- W3100378427 hasConceptScore W3100378427C157369684 @default.
- W3100378427 hasConceptScore W3100378427C158622935 @default.