Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100388886> ?p ?o ?g. }
- W3100388886 abstract "Recent work has shown that optical flow estimation can be formulated as a supervised learning task and can be successfully solved with convolutional networks. Training of the so-called FlowNet was enabled by a large synthetically generated dataset. The present paper extends the concept of optical flow estimation via convolutional networks to disparity and scene flow estimation. To this end, we propose three synthetic stereo video datasets with sufficient realism, variation, and size to successfully train large networks. Our datasets are the first large-scale datasets to enable training and evaluation of scene flow methods. Besides the datasets, we present a convolutional network for real-time disparity estimation that provides state-of-the-art results. By combining a flow and disparity estimation network and training it jointly, we demonstrate the first scene flow estimation with a convolutional network." @default.
- W3100388886 created "2020-11-23" @default.
- W3100388886 creator A5027074906 @default.
- W3100388886 creator A5041583196 @default.
- W3100388886 creator A5051359977 @default.
- W3100388886 creator A5058140817 @default.
- W3100388886 creator A5070290355 @default.
- W3100388886 creator A5087710605 @default.
- W3100388886 creator A5090113830 @default.
- W3100388886 date "2016-06-01" @default.
- W3100388886 modified "2023-10-16" @default.
- W3100388886 title "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation" @default.
- W3100388886 cites W1513100184 @default.
- W3100388886 cites W1528759406 @default.
- W3100388886 cites W1893585201 @default.
- W3100388886 cites W1921093919 @default.
- W3100388886 cites W1932888261 @default.
- W3100388886 cites W1985238052 @default.
- W3100388886 cites W1993850091 @default.
- W3100388886 cites W2024336175 @default.
- W3100388886 cites W2026055959 @default.
- W3100388886 cites W2088692258 @default.
- W3100388886 cites W2098500213 @default.
- W3100388886 cites W2103163130 @default.
- W3100388886 cites W2104974755 @default.
- W3100388886 cites W2113873920 @default.
- W3100388886 cites W2115579991 @default.
- W3100388886 cites W2117248802 @default.
- W3100388886 cites W2119090229 @default.
- W3100388886 cites W2129671742 @default.
- W3100388886 cites W2147800946 @default.
- W3100388886 cites W63091017 @default.
- W3100388886 cites W764651262 @default.
- W3100388886 doi "https://doi.org/10.1109/cvpr.2016.438" @default.
- W3100388886 hasPublicationYear "2016" @default.
- W3100388886 type Work @default.
- W3100388886 sameAs 3100388886 @default.
- W3100388886 citedByCount "1395" @default.
- W3100388886 countsByYear W31003888862012 @default.
- W3100388886 countsByYear W31003888862014 @default.
- W3100388886 countsByYear W31003888862016 @default.
- W3100388886 countsByYear W31003888862017 @default.
- W3100388886 countsByYear W31003888862018 @default.
- W3100388886 countsByYear W31003888862019 @default.
- W3100388886 countsByYear W31003888862020 @default.
- W3100388886 countsByYear W31003888862021 @default.
- W3100388886 countsByYear W31003888862022 @default.
- W3100388886 countsByYear W31003888862023 @default.
- W3100388886 crossrefType "proceedings-article" @default.
- W3100388886 hasAuthorship W3100388886A5027074906 @default.
- W3100388886 hasAuthorship W3100388886A5041583196 @default.
- W3100388886 hasAuthorship W3100388886A5051359977 @default.
- W3100388886 hasAuthorship W3100388886A5058140817 @default.
- W3100388886 hasAuthorship W3100388886A5070290355 @default.
- W3100388886 hasAuthorship W3100388886A5087710605 @default.
- W3100388886 hasAuthorship W3100388886A5090113830 @default.
- W3100388886 hasBestOaLocation W31003888862 @default.
- W3100388886 hasConcept C108583219 @default.
- W3100388886 hasConcept C115961682 @default.
- W3100388886 hasConcept C119857082 @default.
- W3100388886 hasConcept C121332964 @default.
- W3100388886 hasConcept C153180895 @default.
- W3100388886 hasConcept C154945302 @default.
- W3100388886 hasConcept C155542232 @default.
- W3100388886 hasConcept C162324750 @default.
- W3100388886 hasConcept C187736073 @default.
- W3100388886 hasConcept C2524010 @default.
- W3100388886 hasConcept C2778334786 @default.
- W3100388886 hasConcept C2780451532 @default.
- W3100388886 hasConcept C33923547 @default.
- W3100388886 hasConcept C38349280 @default.
- W3100388886 hasConcept C41008148 @default.
- W3100388886 hasConcept C44870925 @default.
- W3100388886 hasConcept C81363708 @default.
- W3100388886 hasConcept C96250715 @default.
- W3100388886 hasConceptScore W3100388886C108583219 @default.
- W3100388886 hasConceptScore W3100388886C115961682 @default.
- W3100388886 hasConceptScore W3100388886C119857082 @default.
- W3100388886 hasConceptScore W3100388886C121332964 @default.
- W3100388886 hasConceptScore W3100388886C153180895 @default.
- W3100388886 hasConceptScore W3100388886C154945302 @default.
- W3100388886 hasConceptScore W3100388886C155542232 @default.
- W3100388886 hasConceptScore W3100388886C162324750 @default.
- W3100388886 hasConceptScore W3100388886C187736073 @default.
- W3100388886 hasConceptScore W3100388886C2524010 @default.
- W3100388886 hasConceptScore W3100388886C2778334786 @default.
- W3100388886 hasConceptScore W3100388886C2780451532 @default.
- W3100388886 hasConceptScore W3100388886C33923547 @default.
- W3100388886 hasConceptScore W3100388886C38349280 @default.
- W3100388886 hasConceptScore W3100388886C41008148 @default.
- W3100388886 hasConceptScore W3100388886C44870925 @default.
- W3100388886 hasConceptScore W3100388886C81363708 @default.
- W3100388886 hasConceptScore W3100388886C96250715 @default.
- W3100388886 hasLocation W31003888861 @default.
- W3100388886 hasLocation W31003888862 @default.
- W3100388886 hasLocation W31003888863 @default.
- W3100388886 hasLocation W31003888864 @default.
- W3100388886 hasOpenAccess W3100388886 @default.
- W3100388886 hasPrimaryLocation W31003888861 @default.
- W3100388886 hasRelatedWork W2337926734 @default.