Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100391461> ?p ?o ?g. }
- W3100391461 endingPage "1935" @default.
- W3100391461 startingPage "1863" @default.
- W3100391461 abstract "We prove weak and strong maximum principles, including a Hopf lemma, for smooth subsolutions to equations defined by linear, second-order, partial differential operators whose principal symbols vanish along a portion of the domain boundary. The boundary regularity property of the smooth subsolutions along this boundary vanishing locus ensures that these maximum principles hold irrespective of the sign of the Fichera function. Boundary conditions need only be prescribed on the complement in the domain boundary of the principal symbol vanishing locus. We obtain uniqueness and a priori maximum principle estimates for smooth solutions to boundary value and obstacle problems defined by these boundary-degenerate elliptic operators for partial Dirichlet or Neumann boundary conditions along the complement of the boundary vanishing locus. We also prove weak maximum principles and uniqueness for solutions to the corresponding variational equations and inequalities defined with the aide of weighted Sobolev spaces. The domain is allowed to be unbounded when the operator coefficients and solutions obey certain growth conditions." @default.
- W3100391461 created "2020-11-23" @default.
- W3100391461 creator A5064826043 @default.
- W3100391461 date "2013-11-02" @default.
- W3100391461 modified "2023-09-25" @default.
- W3100391461 title "Maximum Principles for Boundary-Degenerate Second Order Linear Elliptic Differential Operators" @default.
- W3100391461 cites W1482675993 @default.
- W3100391461 cites W1524094700 @default.
- W3100391461 cites W1588713757 @default.
- W3100391461 cites W1774469878 @default.
- W3100391461 cites W1781889465 @default.
- W3100391461 cites W1866311589 @default.
- W3100391461 cites W1973004035 @default.
- W3100391461 cites W2001244105 @default.
- W3100391461 cites W2015486277 @default.
- W3100391461 cites W2027576481 @default.
- W3100391461 cites W2032316144 @default.
- W3100391461 cites W2046255768 @default.
- W3100391461 cites W2050034099 @default.
- W3100391461 cites W2054579041 @default.
- W3100391461 cites W2055878955 @default.
- W3100391461 cites W2058898968 @default.
- W3100391461 cites W2064978316 @default.
- W3100391461 cites W2069663188 @default.
- W3100391461 cites W2071507840 @default.
- W3100391461 cites W2073476019 @default.
- W3100391461 cites W2074128539 @default.
- W3100391461 cites W2077407187 @default.
- W3100391461 cites W2088114200 @default.
- W3100391461 cites W2092370841 @default.
- W3100391461 cites W2119998039 @default.
- W3100391461 cites W2135557790 @default.
- W3100391461 cites W2145316163 @default.
- W3100391461 cites W2146865114 @default.
- W3100391461 cites W2160819455 @default.
- W3100391461 cites W2329986772 @default.
- W3100391461 cites W3021444882 @default.
- W3100391461 cites W3100551675 @default.
- W3100391461 cites W3102082312 @default.
- W3100391461 cites W3123321876 @default.
- W3100391461 cites W3126049948 @default.
- W3100391461 cites W4210969761 @default.
- W3100391461 cites W4211159534 @default.
- W3100391461 cites W4230835142 @default.
- W3100391461 cites W4232304958 @default.
- W3100391461 cites W4234166373 @default.
- W3100391461 cites W4234449644 @default.
- W3100391461 cites W4239006344 @default.
- W3100391461 cites W4245879216 @default.
- W3100391461 cites W4251988607 @default.
- W3100391461 cites W4298274563 @default.
- W3100391461 cites W639693100 @default.
- W3100391461 cites W651321014 @default.
- W3100391461 doi "https://doi.org/10.1080/03605302.2013.831446" @default.
- W3100391461 hasPublicationYear "2013" @default.
- W3100391461 type Work @default.
- W3100391461 sameAs 3100391461 @default.
- W3100391461 citedByCount "14" @default.
- W3100391461 countsByYear W31003914612014 @default.
- W3100391461 countsByYear W31003914612015 @default.
- W3100391461 countsByYear W31003914612016 @default.
- W3100391461 countsByYear W31003914612017 @default.
- W3100391461 countsByYear W31003914612020 @default.
- W3100391461 countsByYear W31003914612021 @default.
- W3100391461 countsByYear W31003914612022 @default.
- W3100391461 crossrefType "journal-article" @default.
- W3100391461 hasAuthorship W3100391461A5064826043 @default.
- W3100391461 hasBestOaLocation W31003914612 @default.
- W3100391461 hasConcept C110167270 @default.
- W3100391461 hasConcept C121332964 @default.
- W3100391461 hasConcept C126255220 @default.
- W3100391461 hasConcept C134306372 @default.
- W3100391461 hasConcept C163681178 @default.
- W3100391461 hasConcept C182310444 @default.
- W3100391461 hasConcept C194053038 @default.
- W3100391461 hasConcept C202444582 @default.
- W3100391461 hasConcept C2777021972 @default.
- W3100391461 hasConcept C31010330 @default.
- W3100391461 hasConcept C33923547 @default.
- W3100391461 hasConcept C36503486 @default.
- W3100391461 hasConcept C42045870 @default.
- W3100391461 hasConcept C62354387 @default.
- W3100391461 hasConcept C62520636 @default.
- W3100391461 hasConcept C70610323 @default.
- W3100391461 hasConcept C70915906 @default.
- W3100391461 hasConcept C72319582 @default.
- W3100391461 hasConcept C91575142 @default.
- W3100391461 hasConcept C99730327 @default.
- W3100391461 hasConceptScore W3100391461C110167270 @default.
- W3100391461 hasConceptScore W3100391461C121332964 @default.
- W3100391461 hasConceptScore W3100391461C126255220 @default.
- W3100391461 hasConceptScore W3100391461C134306372 @default.
- W3100391461 hasConceptScore W3100391461C163681178 @default.
- W3100391461 hasConceptScore W3100391461C182310444 @default.
- W3100391461 hasConceptScore W3100391461C194053038 @default.
- W3100391461 hasConceptScore W3100391461C202444582 @default.
- W3100391461 hasConceptScore W3100391461C2777021972 @default.
- W3100391461 hasConceptScore W3100391461C31010330 @default.