Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100392170> ?p ?o ?g. }
- W3100392170 abstract "Engineering neural networks to perform specific tasks often represents a monumental challenge in determining network architecture and parameter values. In this work, we extend our previously-developed method for tuning networks of nonspiking neurons, the “Functional subnetwork approach” (FSA), to the tuning of networks composed of spiking neurons. This extension enables the direct assembly and tuning of networks of spiking neurons and synapses based on the network’s intended function, without the use of global optimization or machine learning. To extend the FSA, we show that the dynamics of a generalized linear integrate and fire (GLIF) neuron model have fundamental similarities to those of a nonspiking leaky integrator neuron model. We derive analytical expressions that show functional parallels between: 1) A spiking neuron’s steady-state spiking frequency and a nonspiking neuron’s steady-state voltage in response to an applied current; 2) a spiking neuron’s transient spiking frequency and a nonspiking neuron’s transient voltage in response to an applied current; and 3) a spiking synapse’s average conductance during steady spiking and a nonspiking synapse’s conductance. The models become more similar as additional spiking neurons are added to each population “node” in the network. We apply the FSA to model a neuromuscular reflex pathway two different ways: Via nonspiking components and then via spiking components. These results provide a concrete example of how a single nonspiking neuron may model the average spiking frequency of a population of spiking neurons. The resulting model also demonstrates that by using the FSA, models can be constructed that incorporate both spiking and nonspiking units. This work facilitates the construction of large networks of spiking neurons and synapses that perform specific functions, for example, those implemented with neuromorphic computing hardware, by providing an analytical method for directly tuning their parameters without time-consuming optimization or learning." @default.
- W3100392170 created "2020-11-23" @default.
- W3100392170 creator A5005872346 @default.
- W3100392170 creator A5065352683 @default.
- W3100392170 creator A5079509100 @default.
- W3100392170 date "2020-11-13" @default.
- W3100392170 modified "2023-10-16" @default.
- W3100392170 title "Extending the Functional Subnetwork Approach to a Generalized Linear Integrate-and-Fire Neuron Model" @default.
- W3100392170 cites W1482223596 @default.
- W3100392170 cites W1593839498 @default.
- W3100392170 cites W1642768284 @default.
- W3100392170 cites W1889678891 @default.
- W3100392170 cites W1957247193 @default.
- W3100392170 cites W1986739317 @default.
- W3100392170 cites W1989831790 @default.
- W3100392170 cites W2012391952 @default.
- W3100392170 cites W2016354087 @default.
- W3100392170 cites W2016708835 @default.
- W3100392170 cites W2028378149 @default.
- W3100392170 cites W2042314925 @default.
- W3100392170 cites W2042917835 @default.
- W3100392170 cites W2059966456 @default.
- W3100392170 cites W2065125569 @default.
- W3100392170 cites W2080244875 @default.
- W3100392170 cites W2095768716 @default.
- W3100392170 cites W2115582366 @default.
- W3100392170 cites W2120475512 @default.
- W3100392170 cites W2121458485 @default.
- W3100392170 cites W2130360162 @default.
- W3100392170 cites W2138913040 @default.
- W3100392170 cites W2150447451 @default.
- W3100392170 cites W2153564253 @default.
- W3100392170 cites W2161887055 @default.
- W3100392170 cites W2164610565 @default.
- W3100392170 cites W2590435556 @default.
- W3100392170 cites W2604433691 @default.
- W3100392170 cites W2742508222 @default.
- W3100392170 cites W2743573280 @default.
- W3100392170 cites W2783525259 @default.
- W3100392170 cites W2861313878 @default.
- W3100392170 cites W2883091886 @default.
- W3100392170 cites W2898822913 @default.
- W3100392170 cites W2951628200 @default.
- W3100392170 cites W2981819988 @default.
- W3100392170 cites W2984129648 @default.
- W3100392170 cites W4233030948 @default.
- W3100392170 cites W4237992451 @default.
- W3100392170 cites W4252890603 @default.
- W3100392170 cites W2185212694 @default.
- W3100392170 doi "https://doi.org/10.3389/fnbot.2020.577804" @default.
- W3100392170 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7691602" @default.
- W3100392170 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33281592" @default.
- W3100392170 hasPublicationYear "2020" @default.
- W3100392170 type Work @default.
- W3100392170 sameAs 3100392170 @default.
- W3100392170 citedByCount "9" @default.
- W3100392170 countsByYear W31003921702021 @default.
- W3100392170 countsByYear W31003921702022 @default.
- W3100392170 countsByYear W31003921702023 @default.
- W3100392170 crossrefType "journal-article" @default.
- W3100392170 hasAuthorship W3100392170A5005872346 @default.
- W3100392170 hasAuthorship W3100392170A5065352683 @default.
- W3100392170 hasAuthorship W3100392170A5079509100 @default.
- W3100392170 hasBestOaLocation W31003921701 @default.
- W3100392170 hasConcept C114614502 @default.
- W3100392170 hasConcept C11731999 @default.
- W3100392170 hasConcept C121332964 @default.
- W3100392170 hasConcept C127445978 @default.
- W3100392170 hasConcept C144024400 @default.
- W3100392170 hasConcept C147789679 @default.
- W3100392170 hasConcept C149923435 @default.
- W3100392170 hasConcept C154945302 @default.
- W3100392170 hasConcept C169760540 @default.
- W3100392170 hasConcept C184720557 @default.
- W3100392170 hasConcept C185592680 @default.
- W3100392170 hasConcept C186060115 @default.
- W3100392170 hasConcept C186565885 @default.
- W3100392170 hasConcept C2778794669 @default.
- W3100392170 hasConcept C2780186347 @default.
- W3100392170 hasConcept C2908647359 @default.
- W3100392170 hasConcept C33923547 @default.
- W3100392170 hasConcept C38652104 @default.
- W3100392170 hasConcept C41008148 @default.
- W3100392170 hasConcept C50644808 @default.
- W3100392170 hasConcept C62520636 @default.
- W3100392170 hasConcept C62611344 @default.
- W3100392170 hasConcept C8171440 @default.
- W3100392170 hasConcept C86803240 @default.
- W3100392170 hasConceptScore W3100392170C114614502 @default.
- W3100392170 hasConceptScore W3100392170C11731999 @default.
- W3100392170 hasConceptScore W3100392170C121332964 @default.
- W3100392170 hasConceptScore W3100392170C127445978 @default.
- W3100392170 hasConceptScore W3100392170C144024400 @default.
- W3100392170 hasConceptScore W3100392170C147789679 @default.
- W3100392170 hasConceptScore W3100392170C149923435 @default.
- W3100392170 hasConceptScore W3100392170C154945302 @default.
- W3100392170 hasConceptScore W3100392170C169760540 @default.
- W3100392170 hasConceptScore W3100392170C184720557 @default.
- W3100392170 hasConceptScore W3100392170C185592680 @default.
- W3100392170 hasConceptScore W3100392170C186060115 @default.