Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100397002> ?p ?o ?g. }
- W3100397002 endingPage "54" @default.
- W3100397002 startingPage "41" @default.
- W3100397002 abstract "Lane detection in driving scenes is an important module for autonomous vehicles and advanced driver assistance systems. In recent years, many sophisticated lane detection methods have been proposed. However, most methods focus on detecting the lane from one single image, and often lead to unsatisfactory performance in handling some extremely-bad situations such as heavy shadow, severe mark degradation, serious vehicle occlusion, and so on. In fact, lanes are continuous line structures on the road. Consequently, the lane that cannot be accurately detected in one current frame may potentially be inferred out by incorporating information of previous frames. To this end, we investigate lane detection by using multiple frames of a continuous driving scene, and propose a hybrid deep architecture by combining the convolutional neural network (CNN) and the recurrent neural network (RNN). Specifically, information of each frame is abstracted by a CNN block, and the CNN features of multiple continuous frames, holding the property of time-series, are then fed into the RNN block for feature learning and lane prediction. Extensive experiments on two large-scale datasets demonstrate that, the proposed method outperforms the competing methods in lane detection, especially in handling difficult situations." @default.
- W3100397002 created "2020-11-23" @default.
- W3100397002 creator A5012324763 @default.
- W3100397002 creator A5054470711 @default.
- W3100397002 creator A5056996989 @default.
- W3100397002 creator A5060899838 @default.
- W3100397002 creator A5070093927 @default.
- W3100397002 creator A5076386225 @default.
- W3100397002 date "2020-01-01" @default.
- W3100397002 modified "2023-10-14" @default.
- W3100397002 title "Robust Lane Detection From Continuous Driving Scenes Using Deep Neural Networks" @default.
- W3100397002 cites W1479789543 @default.
- W3100397002 cites W1536680647 @default.
- W3100397002 cites W1544151864 @default.
- W3100397002 cites W1901129140 @default.
- W3100397002 cites W1968256263 @default.
- W3100397002 cites W1976362452 @default.
- W3100397002 cites W2014632812 @default.
- W3100397002 cites W2031081486 @default.
- W3100397002 cites W2038270407 @default.
- W3100397002 cites W2039466015 @default.
- W3100397002 cites W2070724998 @default.
- W3100397002 cites W2082747607 @default.
- W3100397002 cites W2087390872 @default.
- W3100397002 cites W2092282499 @default.
- W3100397002 cites W2094263170 @default.
- W3100397002 cites W2094990266 @default.
- W3100397002 cites W2106976646 @default.
- W3100397002 cites W2108598243 @default.
- W3100397002 cites W2112921976 @default.
- W3100397002 cites W2117594136 @default.
- W3100397002 cites W2131076267 @default.
- W3100397002 cites W2155520527 @default.
- W3100397002 cites W2156128637 @default.
- W3100397002 cites W2159132531 @default.
- W3100397002 cites W2160124664 @default.
- W3100397002 cites W2277132981 @default.
- W3100397002 cites W2395611524 @default.
- W3100397002 cites W2478820856 @default.
- W3100397002 cites W2529429228 @default.
- W3100397002 cites W2548928501 @default.
- W3100397002 cites W2560323025 @default.
- W3100397002 cites W2592152148 @default.
- W3100397002 cites W2610147486 @default.
- W3100397002 cites W2612361394 @default.
- W3100397002 cites W2695874637 @default.
- W3100397002 cites W2738638456 @default.
- W3100397002 cites W2779250840 @default.
- W3100397002 cites W2780740184 @default.
- W3100397002 cites W2793546227 @default.
- W3100397002 cites W2795543364 @default.
- W3100397002 cites W2804070054 @default.
- W3100397002 cites W2806247261 @default.
- W3100397002 cites W2889986507 @default.
- W3100397002 cites W2890657615 @default.
- W3100397002 cites W2895340898 @default.
- W3100397002 cites W2899242765 @default.
- W3100397002 cites W2941750187 @default.
- W3100397002 cites W2943963440 @default.
- W3100397002 cites W2963037989 @default.
- W3100397002 cites W2963150697 @default.
- W3100397002 cites W2963881378 @default.
- W3100397002 cites W2964199920 @default.
- W3100397002 cites W2964332990 @default.
- W3100397002 cites W2966218308 @default.
- W3100397002 cites W2971544778 @default.
- W3100397002 cites W3102168793 @default.
- W3100397002 cites W3105378244 @default.
- W3100397002 doi "https://doi.org/10.1109/tvt.2019.2949603" @default.
- W3100397002 hasPublicationYear "2020" @default.
- W3100397002 type Work @default.
- W3100397002 sameAs 3100397002 @default.
- W3100397002 citedByCount "188" @default.
- W3100397002 countsByYear W31003970022019 @default.
- W3100397002 countsByYear W31003970022020 @default.
- W3100397002 countsByYear W31003970022021 @default.
- W3100397002 countsByYear W31003970022022 @default.
- W3100397002 countsByYear W31003970022023 @default.
- W3100397002 crossrefType "journal-article" @default.
- W3100397002 hasAuthorship W3100397002A5012324763 @default.
- W3100397002 hasAuthorship W3100397002A5054470711 @default.
- W3100397002 hasAuthorship W3100397002A5056996989 @default.
- W3100397002 hasAuthorship W3100397002A5060899838 @default.
- W3100397002 hasAuthorship W3100397002A5070093927 @default.
- W3100397002 hasAuthorship W3100397002A5076386225 @default.
- W3100397002 hasBestOaLocation W31003970022 @default.
- W3100397002 hasConcept C108583219 @default.
- W3100397002 hasConcept C117797892 @default.
- W3100397002 hasConcept C120665830 @default.
- W3100397002 hasConcept C121332964 @default.
- W3100397002 hasConcept C126042441 @default.
- W3100397002 hasConcept C138885662 @default.
- W3100397002 hasConcept C147168706 @default.
- W3100397002 hasConcept C153180895 @default.
- W3100397002 hasConcept C154945302 @default.
- W3100397002 hasConcept C15744967 @default.
- W3100397002 hasConcept C192209626 @default.
- W3100397002 hasConcept C2524010 @default.