Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100405574> ?p ?o ?g. }
- W3100405574 abstract "We construct knot invariants categorifying the quantum knot variants for all representations of quantum groups. We show that these invariants coincide with previous invariants defined by Khovanov for sl_2 and sl_3 and by Mazorchuk-Stroppel and Sussan for sl_n. Our technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is $mathfrak{sl}_n$, we show that these categories agree with certain subcategories of parabolic category O for gl_k. We also investigate the finer structure of these categories: they are standardly stratified and satisfy a double centralizer property with respect to their self-dual modules. The standard modules of the stratification play an important role as test objects for functors, as Vermas do in more classical representation theory. The existence of these representations has consequences for the structure of previously studied categorifications. It allows us to prove the non-degeneracy of Khovanov and Lauda's 2-category (that its Hom spaces have the expected dimension) in all symmetrizable types, and that the cyclotomic quiver Hecke algebras are symmetric Frobenius. In work of Reshetikhin and Turaev, the braiding and (co)evaluation maps between representations of quantum groups are used to define polynomial knot invariants. We show that the categorifications of tensor products are related by functors categorifying these maps, which allow the construction of bigraded knot homologies whose graded Euler characteristics are the original polynomial knot invariants." @default.
- W3100405574 created "2020-11-23" @default.
- W3100405574 creator A5022688253 @default.
- W3100405574 date "2017-10-25" @default.
- W3100405574 modified "2023-09-27" @default.
- W3100405574 title "Knot Invariants and Higher Representation Theory" @default.
- W3100405574 cites W1484344542 @default.
- W3100405574 cites W1495306809 @default.
- W3100405574 cites W1519011338 @default.
- W3100405574 cites W1526024217 @default.
- W3100405574 cites W1539091812 @default.
- W3100405574 cites W1570025911 @default.
- W3100405574 cites W1656036914 @default.
- W3100405574 cites W1664228545 @default.
- W3100405574 cites W1666120112 @default.
- W3100405574 cites W1670229187 @default.
- W3100405574 cites W1674711990 @default.
- W3100405574 cites W169573128 @default.
- W3100405574 cites W1756398040 @default.
- W3100405574 cites W1777107722 @default.
- W3100405574 cites W1965443691 @default.
- W3100405574 cites W1969432190 @default.
- W3100405574 cites W1981331759 @default.
- W3100405574 cites W1985366539 @default.
- W3100405574 cites W1990860481 @default.
- W3100405574 cites W1995825433 @default.
- W3100405574 cites W1996321859 @default.
- W3100405574 cites W2018733254 @default.
- W3100405574 cites W2022717511 @default.
- W3100405574 cites W2029675974 @default.
- W3100405574 cites W2034216336 @default.
- W3100405574 cites W2047525384 @default.
- W3100405574 cites W2054866775 @default.
- W3100405574 cites W2056647821 @default.
- W3100405574 cites W2073215282 @default.
- W3100405574 cites W2076293732 @default.
- W3100405574 cites W2080743555 @default.
- W3100405574 cites W2081347734 @default.
- W3100405574 cites W2084061070 @default.
- W3100405574 cites W2087217213 @default.
- W3100405574 cites W2088353214 @default.
- W3100405574 cites W2102012038 @default.
- W3100405574 cites W2105853875 @default.
- W3100405574 cites W2113304818 @default.
- W3100405574 cites W2135977307 @default.
- W3100405574 cites W2138044972 @default.
- W3100405574 cites W2138368415 @default.
- W3100405574 cites W2156923290 @default.
- W3100405574 cites W2158932206 @default.
- W3100405574 cites W2162637896 @default.
- W3100405574 cites W2172106302 @default.
- W3100405574 cites W2258951999 @default.
- W3100405574 cites W2592519276 @default.
- W3100405574 cites W2962717041 @default.
- W3100405574 cites W2962729561 @default.
- W3100405574 cites W2962786328 @default.
- W3100405574 cites W2963037603 @default.
- W3100405574 cites W2963527165 @default.
- W3100405574 cites W2963694066 @default.
- W3100405574 cites W3037110197 @default.
- W3100405574 cites W3039186122 @default.
- W3100405574 cites W3098204258 @default.
- W3100405574 cites W3100661685 @default.
- W3100405574 cites W3101165865 @default.
- W3100405574 cites W3101556274 @default.
- W3100405574 cites W3101779651 @default.
- W3100405574 cites W3102115751 @default.
- W3100405574 cites W3102718270 @default.
- W3100405574 cites W3102907650 @default.
- W3100405574 cites W3124543107 @default.
- W3100405574 cites W2070708314 @default.
- W3100405574 hasPublicationYear "2017" @default.
- W3100405574 type Work @default.
- W3100405574 sameAs 3100405574 @default.
- W3100405574 citedByCount "31" @default.
- W3100405574 countsByYear W31004055742012 @default.
- W3100405574 countsByYear W31004055742013 @default.
- W3100405574 countsByYear W31004055742014 @default.
- W3100405574 countsByYear W31004055742015 @default.
- W3100405574 countsByYear W31004055742016 @default.
- W3100405574 countsByYear W31004055742017 @default.
- W3100405574 countsByYear W31004055742018 @default.
- W3100405574 countsByYear W31004055742019 @default.
- W3100405574 countsByYear W31004055742020 @default.
- W3100405574 countsByYear W31004055742021 @default.
- W3100405574 countsByYear W31004055742022 @default.
- W3100405574 crossrefType "book" @default.
- W3100405574 hasAuthorship W3100405574A5022688253 @default.
- W3100405574 hasConcept C127413603 @default.
- W3100405574 hasConcept C136119220 @default.
- W3100405574 hasConcept C143330242 @default.
- W3100405574 hasConcept C156772000 @default.
- W3100405574 hasConcept C168310172 @default.
- W3100405574 hasConcept C197273675 @default.
- W3100405574 hasConcept C199422724 @default.
- W3100405574 hasConcept C202444582 @default.
- W3100405574 hasConcept C2779863119 @default.
- W3100405574 hasConcept C33923547 @default.
- W3100405574 hasConcept C36794415 @default.
- W3100405574 hasConcept C42360764 @default.