Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100410054> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3100410054 endingPage "488" @default.
- W3100410054 startingPage "473" @default.
- W3100410054 abstract "Traffic forecasting approaches are critical to developing adaptive strategies for mobility. Traffic patterns have complex spatial and temporal dependencies that make accurate forecasting on large highway networks a challenging task. Recently, diffusion convolutional recurrent neural networks (DCRNNs) have achieved state-of-the-art results in traffic forecasting by capturing the spatiotemporal dynamics of the traffic. Despite the promising results, however, applying DCRNNs for large highway networks still remains elusive because of computational and memory bottlenecks. This paper presents an approach for implementing a DCRNN for a large highway network that overcomes these limitations. This approach uses a graph-partitioning method to decompose a large highway network into smaller networks and trains them independently. The efficacy of the graph-partitioning-based DCRNN approach to model the traffic on a large California highway network with 11,160 sensor locations is demonstrated. An overlapping-nodes approach for the graph-partitioning-based DCRNN is developed to include sensor locations from partitions that are geographically close to a given partition. Furthermore, it is demonstrated that the DCRNN model can be used to forecast the speed and flow simultaneously and that the forecasted values preserve fundamental traffic flow dynamics. This approach to developing DCRNN models that represent large highway networks can be a potential core capability in advanced highway traffic monitoring systems, where a trained DCRNN model forecasting traffic at all sensor locations can be used to adjust traffic management strategies proactively based on anticipated future conditions." @default.
- W3100410054 created "2020-11-23" @default.
- W3100410054 creator A5003465061 @default.
- W3100410054 creator A5037238294 @default.
- W3100410054 creator A5044866282 @default.
- W3100410054 creator A5068721920 @default.
- W3100410054 date "2020-07-19" @default.
- W3100410054 modified "2023-10-16" @default.
- W3100410054 title "Graph-Partitioning-Based Diffusion Convolutional Recurrent Neural Network for Large-Scale Traffic Forecasting" @default.
- W3100410054 cites W1570618211 @default.
- W3100410054 cites W1967444754 @default.
- W3100410054 cites W1971884787 @default.
- W3100410054 cites W1973943669 @default.
- W3100410054 cites W2004353783 @default.
- W3100410054 cites W2004951603 @default.
- W3100410054 cites W2065783918 @default.
- W3100410054 cites W2068163594 @default.
- W3100410054 cites W2070232376 @default.
- W3100410054 cites W2083238230 @default.
- W3100410054 cites W2094410484 @default.
- W3100410054 cites W2111373303 @default.
- W3100410054 cites W2124657875 @default.
- W3100410054 cites W2150152686 @default.
- W3100410054 cites W2150263714 @default.
- W3100410054 cites W2157331557 @default.
- W3100410054 cites W2165991108 @default.
- W3100410054 cites W2579495707 @default.
- W3100410054 cites W2588954203 @default.
- W3100410054 cites W2613322775 @default.
- W3100410054 cites W2613331518 @default.
- W3100410054 cites W2617931713 @default.
- W3100410054 cites W2889793454 @default.
- W3100410054 cites W2911964244 @default.
- W3100410054 cites W4241115065 @default.
- W3100410054 cites W4294351786 @default.
- W3100410054 doi "https://doi.org/10.1177/0361198120930010" @default.
- W3100410054 hasPublicationYear "2020" @default.
- W3100410054 type Work @default.
- W3100410054 sameAs 3100410054 @default.
- W3100410054 citedByCount "36" @default.
- W3100410054 countsByYear W31004100542020 @default.
- W3100410054 countsByYear W31004100542021 @default.
- W3100410054 countsByYear W31004100542022 @default.
- W3100410054 countsByYear W31004100542023 @default.
- W3100410054 crossrefType "journal-article" @default.
- W3100410054 hasAuthorship W3100410054A5003465061 @default.
- W3100410054 hasAuthorship W3100410054A5037238294 @default.
- W3100410054 hasAuthorship W3100410054A5044866282 @default.
- W3100410054 hasAuthorship W3100410054A5068721920 @default.
- W3100410054 hasBestOaLocation W31004100542 @default.
- W3100410054 hasConcept C114614502 @default.
- W3100410054 hasConcept C114809511 @default.
- W3100410054 hasConcept C124101348 @default.
- W3100410054 hasConcept C126255220 @default.
- W3100410054 hasConcept C132525143 @default.
- W3100410054 hasConcept C176715033 @default.
- W3100410054 hasConcept C207512268 @default.
- W3100410054 hasConcept C33923547 @default.
- W3100410054 hasConcept C38652104 @default.
- W3100410054 hasConcept C41008148 @default.
- W3100410054 hasConcept C42812 @default.
- W3100410054 hasConcept C48903430 @default.
- W3100410054 hasConcept C79403827 @default.
- W3100410054 hasConcept C80444323 @default.
- W3100410054 hasConceptScore W3100410054C114614502 @default.
- W3100410054 hasConceptScore W3100410054C114809511 @default.
- W3100410054 hasConceptScore W3100410054C124101348 @default.
- W3100410054 hasConceptScore W3100410054C126255220 @default.
- W3100410054 hasConceptScore W3100410054C132525143 @default.
- W3100410054 hasConceptScore W3100410054C176715033 @default.
- W3100410054 hasConceptScore W3100410054C207512268 @default.
- W3100410054 hasConceptScore W3100410054C33923547 @default.
- W3100410054 hasConceptScore W3100410054C38652104 @default.
- W3100410054 hasConceptScore W3100410054C41008148 @default.
- W3100410054 hasConceptScore W3100410054C42812 @default.
- W3100410054 hasConceptScore W3100410054C48903430 @default.
- W3100410054 hasConceptScore W3100410054C79403827 @default.
- W3100410054 hasConceptScore W3100410054C80444323 @default.
- W3100410054 hasIssue "9" @default.
- W3100410054 hasLocation W31004100541 @default.
- W3100410054 hasLocation W31004100542 @default.
- W3100410054 hasOpenAccess W3100410054 @default.
- W3100410054 hasPrimaryLocation W31004100541 @default.
- W3100410054 hasRelatedWork W2361078351 @default.
- W3100410054 hasRelatedWork W2394010358 @default.
- W3100410054 hasRelatedWork W2583811263 @default.
- W3100410054 hasRelatedWork W2587362999 @default.
- W3100410054 hasRelatedWork W2782513589 @default.
- W3100410054 hasRelatedWork W2986732134 @default.
- W3100410054 hasRelatedWork W3134869969 @default.
- W3100410054 hasRelatedWork W3139829055 @default.
- W3100410054 hasRelatedWork W3173312668 @default.
- W3100410054 hasRelatedWork W432084041 @default.
- W3100410054 hasVolume "2674" @default.
- W3100410054 isParatext "false" @default.
- W3100410054 isRetracted "false" @default.
- W3100410054 magId "3100410054" @default.
- W3100410054 workType "article" @default.