Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100431680> ?p ?o ?g. }
- W3100431680 endingPage "1363" @default.
- W3100431680 startingPage "1341" @default.
- W3100431680 abstract "In wavelet shrinkage and thresholding, most of the standard techniques do not consider information that wavelet coefficients might be bounded, although information about bounded energy in signals can be readily available. To address this, we present a Bayesian approach for shrinkage of bounded wavelet coefficients in the context of non-parametric regression. We propose the use of a zero-contaminated beta distribution with a support symmetric around zero as the prior distribution for the location parameter in the wavelet domain in models with additive gaussian errors. The hyperparameters of the proposed model are closely related to the shrinkage level, which facilitates their elicitation and interpretation. For signals with a low signal-to-noise ratio, the associated Bayesian shrinkage rules provide significant improvement in performance in simulation studies when compared with standard techniques. Statistical properties such as bias, variance, classical and Bayesian risks of the associated shrinkage rules are presented and their performance is assessed in simulations studies involving standard test functions. Application to real neurological data set on spike sorting is also presented." @default.
- W3100431680 created "2020-11-23" @default.
- W3100431680 creator A5029550725 @default.
- W3100431680 creator A5044720728 @default.
- W3100431680 creator A5085547798 @default.
- W3100431680 date "2020-11-19" @default.
- W3100431680 modified "2023-10-15" @default.
- W3100431680 title "Bayesian wavelet shrinkage with beta priors" @default.
- W3100431680 cites W1541794730 @default.
- W3100431680 cites W1963691065 @default.
- W3100431680 cites W1964809923 @default.
- W3100431680 cites W1978012821 @default.
- W3100431680 cites W1996624683 @default.
- W3100431680 cites W2020844174 @default.
- W3100431680 cites W2039307446 @default.
- W3100431680 cites W2046031028 @default.
- W3100431680 cites W2050880896 @default.
- W3100431680 cites W2053695046 @default.
- W3100431680 cites W2061052441 @default.
- W3100431680 cites W2079724595 @default.
- W3100431680 cites W2086957086 @default.
- W3100431680 cites W2092543127 @default.
- W3100431680 cites W2093879565 @default.
- W3100431680 cites W2097872824 @default.
- W3100431680 cites W2098179542 @default.
- W3100431680 cites W2103325981 @default.
- W3100431680 cites W2114652450 @default.
- W3100431680 cites W2122227532 @default.
- W3100431680 cites W2136104104 @default.
- W3100431680 cites W2140667604 @default.
- W3100431680 cites W2146842127 @default.
- W3100431680 cites W2150149003 @default.
- W3100431680 cites W2158940042 @default.
- W3100431680 cites W2171406132 @default.
- W3100431680 cites W2284872233 @default.
- W3100431680 cites W2729804518 @default.
- W3100431680 cites W2993463480 @default.
- W3100431680 cites W3100431680 @default.
- W3100431680 cites W3106385547 @default.
- W3100431680 cites W4250507776 @default.
- W3100431680 cites W4295332281 @default.
- W3100431680 doi "https://doi.org/10.1007/s00180-020-01048-1" @default.
- W3100431680 hasPublicationYear "2020" @default.
- W3100431680 type Work @default.
- W3100431680 sameAs 3100431680 @default.
- W3100431680 citedByCount "7" @default.
- W3100431680 countsByYear W31004316802020 @default.
- W3100431680 countsByYear W31004316802021 @default.
- W3100431680 countsByYear W31004316802022 @default.
- W3100431680 countsByYear W31004316802023 @default.
- W3100431680 crossrefType "journal-article" @default.
- W3100431680 hasAuthorship W3100431680A5029550725 @default.
- W3100431680 hasAuthorship W3100431680A5044720728 @default.
- W3100431680 hasAuthorship W3100431680A5085547798 @default.
- W3100431680 hasBestOaLocation W31004316802 @default.
- W3100431680 hasConcept C102592046 @default.
- W3100431680 hasConcept C105795698 @default.
- W3100431680 hasConcept C107673813 @default.
- W3100431680 hasConcept C11413529 @default.
- W3100431680 hasConcept C139945424 @default.
- W3100431680 hasConcept C153180895 @default.
- W3100431680 hasConcept C154945302 @default.
- W3100431680 hasConcept C160234255 @default.
- W3100431680 hasConcept C165646398 @default.
- W3100431680 hasConcept C177769412 @default.
- W3100431680 hasConcept C180145272 @default.
- W3100431680 hasConcept C191393472 @default.
- W3100431680 hasConcept C33923547 @default.
- W3100431680 hasConcept C41008148 @default.
- W3100431680 hasConcept C47432892 @default.
- W3100431680 hasConcept C8642999 @default.
- W3100431680 hasConceptScore W3100431680C102592046 @default.
- W3100431680 hasConceptScore W3100431680C105795698 @default.
- W3100431680 hasConceptScore W3100431680C107673813 @default.
- W3100431680 hasConceptScore W3100431680C11413529 @default.
- W3100431680 hasConceptScore W3100431680C139945424 @default.
- W3100431680 hasConceptScore W3100431680C153180895 @default.
- W3100431680 hasConceptScore W3100431680C154945302 @default.
- W3100431680 hasConceptScore W3100431680C160234255 @default.
- W3100431680 hasConceptScore W3100431680C165646398 @default.
- W3100431680 hasConceptScore W3100431680C177769412 @default.
- W3100431680 hasConceptScore W3100431680C180145272 @default.
- W3100431680 hasConceptScore W3100431680C191393472 @default.
- W3100431680 hasConceptScore W3100431680C33923547 @default.
- W3100431680 hasConceptScore W3100431680C41008148 @default.
- W3100431680 hasConceptScore W3100431680C47432892 @default.
- W3100431680 hasConceptScore W3100431680C8642999 @default.
- W3100431680 hasFunder F4320321091 @default.
- W3100431680 hasFunder F4320322025 @default.
- W3100431680 hasIssue "2" @default.
- W3100431680 hasLocation W31004316801 @default.
- W3100431680 hasLocation W31004316802 @default.
- W3100431680 hasOpenAccess W3100431680 @default.
- W3100431680 hasPrimaryLocation W31004316801 @default.
- W3100431680 hasRelatedWork W195828364 @default.
- W3100431680 hasRelatedWork W2008738057 @default.
- W3100431680 hasRelatedWork W2061052441 @default.
- W3100431680 hasRelatedWork W2367754282 @default.