Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100455055> ?p ?o ?g. }
- W3100455055 endingPage "89" @default.
- W3100455055 startingPage "79" @default.
- W3100455055 abstract "Identified mainly by memory loss and social inability, dementia may result from several different diseases. In the world with ever growing elderly population, the problem of dementia is rising. Despite being one of the prevalent mental health conditions in the community, it is not timely identified, reported and even understood completely. With the massive improvement in the computational power, researchers have developed machine learning (ML) techniques to diagnose and detect neurodegenerative diseases. This current work reports a comparative study of performance of several ML techniques, including support vector machine, logistic regression, artificial neural network, Naive Bayes, decision tree, random forest and K-nearest neighbor, when they are employed in identifying dementia from clinical datasets. It has been found that support vector machine and random forest perform better on datasets coming from open access repositories such as open access series of imaging studies, Alzheimer’s disease neuroimaging initiative and dementia bank datasets." @default.
- W3100455055 created "2020-11-23" @default.
- W3100455055 creator A5021820555 @default.
- W3100455055 creator A5027525633 @default.
- W3100455055 creator A5057247142 @default.
- W3100455055 creator A5071872660 @default.
- W3100455055 creator A5074136196 @default.
- W3100455055 date "2020-10-20" @default.
- W3100455055 modified "2023-10-02" @default.
- W3100455055 title "Performance Comparison of Machine Learning Techniques in Identifying Dementia from Open Access Clinical Datasets" @default.
- W3100455055 cites W1527671059 @default.
- W3100455055 cites W1992709597 @default.
- W3100455055 cites W2041677347 @default.
- W3100455055 cites W2048943469 @default.
- W3100455055 cites W2071477014 @default.
- W3100455055 cites W2135028448 @default.
- W3100455055 cites W2205961273 @default.
- W3100455055 cites W2250883471 @default.
- W3100455055 cites W2257979135 @default.
- W3100455055 cites W2548639879 @default.
- W3100455055 cites W2592343442 @default.
- W3100455055 cites W2626513856 @default.
- W3100455055 cites W2735045133 @default.
- W3100455055 cites W2754285450 @default.
- W3100455055 cites W2755232679 @default.
- W3100455055 cites W2768956845 @default.
- W3100455055 cites W2787894218 @default.
- W3100455055 cites W2805328357 @default.
- W3100455055 cites W2896821547 @default.
- W3100455055 cites W2901966692 @default.
- W3100455055 cites W2904739583 @default.
- W3100455055 cites W2946410019 @default.
- W3100455055 cites W2955374087 @default.
- W3100455055 cites W2959807905 @default.
- W3100455055 cites W2992806896 @default.
- W3100455055 cites W2993516307 @default.
- W3100455055 cites W2996830751 @default.
- W3100455055 cites W2997856592 @default.
- W3100455055 cites W3007014740 @default.
- W3100455055 cites W3009360413 @default.
- W3100455055 cites W3014251530 @default.
- W3100455055 doi "https://doi.org/10.1007/978-981-15-6048-4_8" @default.
- W3100455055 hasPublicationYear "2020" @default.
- W3100455055 type Work @default.
- W3100455055 sameAs 3100455055 @default.
- W3100455055 citedByCount "36" @default.
- W3100455055 countsByYear W31004550552020 @default.
- W3100455055 countsByYear W31004550552021 @default.
- W3100455055 countsByYear W31004550552022 @default.
- W3100455055 countsByYear W31004550552023 @default.
- W3100455055 crossrefType "book-chapter" @default.
- W3100455055 hasAuthorship W3100455055A5021820555 @default.
- W3100455055 hasAuthorship W3100455055A5027525633 @default.
- W3100455055 hasAuthorship W3100455055A5057247142 @default.
- W3100455055 hasAuthorship W3100455055A5071872660 @default.
- W3100455055 hasAuthorship W3100455055A5074136196 @default.
- W3100455055 hasConcept C118552586 @default.
- W3100455055 hasConcept C119857082 @default.
- W3100455055 hasConcept C12267149 @default.
- W3100455055 hasConcept C142724271 @default.
- W3100455055 hasConcept C151956035 @default.
- W3100455055 hasConcept C154945302 @default.
- W3100455055 hasConcept C169258074 @default.
- W3100455055 hasConcept C2779134260 @default.
- W3100455055 hasConcept C2779483572 @default.
- W3100455055 hasConcept C2908647359 @default.
- W3100455055 hasConcept C41008148 @default.
- W3100455055 hasConcept C50644808 @default.
- W3100455055 hasConcept C52001869 @default.
- W3100455055 hasConcept C58693492 @default.
- W3100455055 hasConcept C71924100 @default.
- W3100455055 hasConcept C84525736 @default.
- W3100455055 hasConcept C99454951 @default.
- W3100455055 hasConceptScore W3100455055C118552586 @default.
- W3100455055 hasConceptScore W3100455055C119857082 @default.
- W3100455055 hasConceptScore W3100455055C12267149 @default.
- W3100455055 hasConceptScore W3100455055C142724271 @default.
- W3100455055 hasConceptScore W3100455055C151956035 @default.
- W3100455055 hasConceptScore W3100455055C154945302 @default.
- W3100455055 hasConceptScore W3100455055C169258074 @default.
- W3100455055 hasConceptScore W3100455055C2779134260 @default.
- W3100455055 hasConceptScore W3100455055C2779483572 @default.
- W3100455055 hasConceptScore W3100455055C2908647359 @default.
- W3100455055 hasConceptScore W3100455055C41008148 @default.
- W3100455055 hasConceptScore W3100455055C50644808 @default.
- W3100455055 hasConceptScore W3100455055C52001869 @default.
- W3100455055 hasConceptScore W3100455055C58693492 @default.
- W3100455055 hasConceptScore W3100455055C71924100 @default.
- W3100455055 hasConceptScore W3100455055C84525736 @default.
- W3100455055 hasConceptScore W3100455055C99454951 @default.
- W3100455055 hasLocation W31004550551 @default.
- W3100455055 hasOpenAccess W3100455055 @default.
- W3100455055 hasPrimaryLocation W31004550551 @default.
- W3100455055 hasRelatedWork W3127425528 @default.
- W3100455055 hasRelatedWork W3143658565 @default.
- W3100455055 hasRelatedWork W3204641204 @default.
- W3100455055 hasRelatedWork W4246246790 @default.
- W3100455055 hasRelatedWork W4281846282 @default.