Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100481691> ?p ?o ?g. }
- W3100481691 endingPage "095002" @default.
- W3100481691 startingPage "095002" @default.
- W3100481691 abstract "For the quantum Ising model with ferromagnetic random couplings $J_{i,j}>0$ and random transverse fields $h_i>0$ at zero temperature in finite dimensions $d>1$, we consider the lowest-order contributions in perturbation theory in $(J_{i,j}/h_i)$ to obtain some information on the statistics of various observables in the disordered phase. We find that the two-point correlation scales as : $ln C(r) sim - frac{r}{xi_{typ}} +r^{omega} u$, where $xi_{typ} $ is the typical correlation length, $u$ is a random variable, and $omega$ coincides with the droplet exponent $omega_{DP}(D=d-1)$ of the Directed Polymer with $D=(d-1)$ transverse directions. Our main conclusions are (i) whenever $omega>0$, the quantum model is governed by an Infinite-Disorder fixed point : there are two distinct correlation length exponents related by $nu_{typ}=(1-omega)nu_{av}$ ; the distribution of the local susceptibility $chi_{loc}$ presents the power-law tail $P(chi_{loc}) sim 1/chi_{loc}^{1+mu}$ where $mu$ vanishes as $xi_{av}^{-omega} $, so that the averaged local susceptibility diverges in a finite neighborhood $0<mu<1$ before criticality (Griffiths phase) ; the dynamical exponent $z$ diverges near criticality as $z=d/mu sim xi_{av}^{omega}$ (ii) in dimensions $d leq 3$, any infinitesimal disorder flows towards this Infinite-Disorder fixed point with $omega(d)>0$ (for instance $omega(d=2)=1/3$ and $omega(d=3) sim 0.24$) (iii) in finite dimensions $d > 3$, a finite disorder strength is necessary to flow towards the Infinite-Disorder fixed point with $omega(d)>0$ (for instance $omega(d=4) simeq 0.19$), whereas a Finite-Disorder fixed point remains possible for a small enough disorder strength. For the Cayley tree of effective dimension $d=infty$ where $omega=0$, we discuss the similarities and differences with the case of finite dimensions." @default.
- W3100481691 created "2020-11-23" @default.
- W3100481691 creator A5060853119 @default.
- W3100481691 creator A5090565816 @default.
- W3100481691 date "2012-02-16" @default.
- W3100481691 modified "2023-09-25" @default.
- W3100481691 title "Random transverse field Ising model in dimensiond> 1: scaling analysis in the disordered phase from the directed polymer model" @default.
- W3100481691 cites W1526257355 @default.
- W3100481691 cites W1554977691 @default.
- W3100481691 cites W1577096229 @default.
- W3100481691 cites W1600607675 @default.
- W3100481691 cites W1677703250 @default.
- W3100481691 cites W1765823062 @default.
- W3100481691 cites W1965408845 @default.
- W3100481691 cites W1967191716 @default.
- W3100481691 cites W1971795650 @default.
- W3100481691 cites W1972176353 @default.
- W3100481691 cites W1978325598 @default.
- W3100481691 cites W1979545065 @default.
- W3100481691 cites W1979913454 @default.
- W3100481691 cites W1983571232 @default.
- W3100481691 cites W1984842125 @default.
- W3100481691 cites W1986297587 @default.
- W3100481691 cites W1989444358 @default.
- W3100481691 cites W1989774396 @default.
- W3100481691 cites W1989792517 @default.
- W3100481691 cites W1992118529 @default.
- W3100481691 cites W1993031035 @default.
- W3100481691 cites W1994858167 @default.
- W3100481691 cites W1995083282 @default.
- W3100481691 cites W1996433014 @default.
- W3100481691 cites W1998996824 @default.
- W3100481691 cites W2000149163 @default.
- W3100481691 cites W2001817579 @default.
- W3100481691 cites W2003721088 @default.
- W3100481691 cites W2004551107 @default.
- W3100481691 cites W2004571405 @default.
- W3100481691 cites W2007804609 @default.
- W3100481691 cites W2012994281 @default.
- W3100481691 cites W2013576725 @default.
- W3100481691 cites W2013911361 @default.
- W3100481691 cites W2016268384 @default.
- W3100481691 cites W2018016439 @default.
- W3100481691 cites W2018248087 @default.
- W3100481691 cites W2019194853 @default.
- W3100481691 cites W2025071341 @default.
- W3100481691 cites W2029851794 @default.
- W3100481691 cites W2029984205 @default.
- W3100481691 cites W2034257851 @default.
- W3100481691 cites W2043574365 @default.
- W3100481691 cites W2045127536 @default.
- W3100481691 cites W2046133172 @default.
- W3100481691 cites W2047142551 @default.
- W3100481691 cites W2047322305 @default.
- W3100481691 cites W2047722015 @default.
- W3100481691 cites W2048481523 @default.
- W3100481691 cites W2052641132 @default.
- W3100481691 cites W2053768365 @default.
- W3100481691 cites W2054853968 @default.
- W3100481691 cites W2059907706 @default.
- W3100481691 cites W2062517214 @default.
- W3100481691 cites W2065303416 @default.
- W3100481691 cites W2065462573 @default.
- W3100481691 cites W2067045222 @default.
- W3100481691 cites W2072790958 @default.
- W3100481691 cites W2073572589 @default.
- W3100481691 cites W2080144104 @default.
- W3100481691 cites W2080704427 @default.
- W3100481691 cites W2083024011 @default.
- W3100481691 cites W2085757717 @default.
- W3100481691 cites W2086456668 @default.
- W3100481691 cites W2091957196 @default.
- W3100481691 cites W2093444493 @default.
- W3100481691 cites W2095197694 @default.
- W3100481691 cites W2106554732 @default.
- W3100481691 cites W2110617809 @default.
- W3100481691 cites W2117345524 @default.
- W3100481691 cites W2118682732 @default.
- W3100481691 cites W2142028957 @default.
- W3100481691 cites W2143141531 @default.
- W3100481691 cites W2144330969 @default.
- W3100481691 cites W2149433831 @default.
- W3100481691 cites W2170429144 @default.
- W3100481691 cites W2320155208 @default.
- W3100481691 cites W3098598776 @default.
- W3100481691 cites W3098649706 @default.
- W3100481691 cites W3098982507 @default.
- W3100481691 cites W3099574949 @default.
- W3100481691 cites W3099803055 @default.
- W3100481691 cites W3100333039 @default.
- W3100481691 cites W3102252855 @default.
- W3100481691 cites W3102500450 @default.
- W3100481691 cites W3103089814 @default.
- W3100481691 cites W3125369678 @default.
- W3100481691 cites W3152124308 @default.
- W3100481691 cites W32103840 @default.
- W3100481691 doi "https://doi.org/10.1088/1751-8113/45/9/095002" @default.
- W3100481691 hasPublicationYear "2012" @default.