Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100509703> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3100509703 abstract "<p>Spatio-temporal modelling of wind speed is an important issue in applied research, such as renewable energy and risk assessment. Due to its turbulent nature and its very high variability, wind speed interpolation is a challenging task. Being universal modeling tools, Machine Learning (ML) algorithms are well suited to detect and model non-linear environmental phenomena such as wind.</p> <p>The present research proposes a novel and general methodology for spatio-temporal interpolation with an application to hourly wind speed in Switzerland. The methodology is organized as follows. First, the dataset is decomposed through Empirical Orthogonal Functions (EOFs) in temporal basis and spatially dependent coefficients. EOFs constitute an orthogonal basis of the spatio-temporal signal from which the original wind field can be reconstructed. Subsequently, in order to be able to reconstruct the signal at spatial locations where measurements are unknown, the spatial coefficients resulted from the decomposition are interpolated. To this aim, several ML algorithms were used and compared, including k-Nearest Neighbors, Random Forest, Support Vector Machine, General Regression Neural Networks and Extreme Learning Machine. Finally, wind field is reconstructed with the help of the interpolated coefficients.</p> <p>A case study on real data is presented. Data consists of two years of wind speed measurements at hourly frequency collected by Meteoswiss at several hundreds of stations in Switzerland, which has a complex orography. After cleaning and handling of missing values, a careful exploratory data analysis was carried out, followed by the application of the proposed novel methodology. The model is validated on an independent test set of stations. The outcome of the case study is a time series of hourly maps of wind field at 250 meters spatial resolution, which is highly relevant for renewable energy potential assessment.</p> <p>In conclusion, the study introduced a new way to interpolate irregular spatio-temporal datasets. Further developments of the methodology could deal with the investigation of alternative basis such as Fourier and wavelets.</p> <p>&#160;</p> <p><strong>Reference</strong></p> <p>N. Cressie, C. K. Wikle, Statistics for Spatio-Temporal Data, Wiley, 2011.</p> <p>M. Kanevski, A. Pozdnoukhov, V. Timonin, Machine Learning for Spatial Environmental Data, CRC Press, 2009.</p>" @default.
- W3100509703 created "2020-11-23" @default.
- W3100509703 creator A5026024934 @default.
- W3100509703 creator A5063482304 @default.
- W3100509703 creator A5068472081 @default.
- W3100509703 creator A5069948244 @default.
- W3100509703 date "2020-03-09" @default.
- W3100509703 modified "2023-09-25" @default.
- W3100509703 title "Spatio-Temporal Modeling of Wind Speed Using EOF and Machine Learning" @default.
- W3100509703 doi "https://doi.org/10.5194/egusphere-egu2020-9186" @default.
- W3100509703 hasPublicationYear "2020" @default.
- W3100509703 type Work @default.
- W3100509703 sameAs 3100509703 @default.
- W3100509703 citedByCount "0" @default.
- W3100509703 crossrefType "posted-content" @default.
- W3100509703 hasAuthorship W3100509703A5026024934 @default.
- W3100509703 hasAuthorship W3100509703A5063482304 @default.
- W3100509703 hasAuthorship W3100509703A5068472081 @default.
- W3100509703 hasAuthorship W3100509703A5069948244 @default.
- W3100509703 hasConcept C104114177 @default.
- W3100509703 hasConcept C11413529 @default.
- W3100509703 hasConcept C119857082 @default.
- W3100509703 hasConcept C12267149 @default.
- W3100509703 hasConcept C12426560 @default.
- W3100509703 hasConcept C13724139 @default.
- W3100509703 hasConcept C137800194 @default.
- W3100509703 hasConcept C153294291 @default.
- W3100509703 hasConcept C154945302 @default.
- W3100509703 hasConcept C161067210 @default.
- W3100509703 hasConcept C202444582 @default.
- W3100509703 hasConcept C205649164 @default.
- W3100509703 hasConcept C2524010 @default.
- W3100509703 hasConcept C33923547 @default.
- W3100509703 hasConcept C41008148 @default.
- W3100509703 hasConcept C9652623 @default.
- W3100509703 hasConceptScore W3100509703C104114177 @default.
- W3100509703 hasConceptScore W3100509703C11413529 @default.
- W3100509703 hasConceptScore W3100509703C119857082 @default.
- W3100509703 hasConceptScore W3100509703C12267149 @default.
- W3100509703 hasConceptScore W3100509703C12426560 @default.
- W3100509703 hasConceptScore W3100509703C13724139 @default.
- W3100509703 hasConceptScore W3100509703C137800194 @default.
- W3100509703 hasConceptScore W3100509703C153294291 @default.
- W3100509703 hasConceptScore W3100509703C154945302 @default.
- W3100509703 hasConceptScore W3100509703C161067210 @default.
- W3100509703 hasConceptScore W3100509703C202444582 @default.
- W3100509703 hasConceptScore W3100509703C205649164 @default.
- W3100509703 hasConceptScore W3100509703C2524010 @default.
- W3100509703 hasConceptScore W3100509703C33923547 @default.
- W3100509703 hasConceptScore W3100509703C41008148 @default.
- W3100509703 hasConceptScore W3100509703C9652623 @default.
- W3100509703 hasLocation W31005097031 @default.
- W3100509703 hasOpenAccess W3100509703 @default.
- W3100509703 hasPrimaryLocation W31005097031 @default.
- W3100509703 hasRelatedWork W11163017 @default.
- W3100509703 hasRelatedWork W12017876 @default.
- W3100509703 hasRelatedWork W12043821 @default.
- W3100509703 hasRelatedWork W1345520 @default.
- W3100509703 hasRelatedWork W2640502 @default.
- W3100509703 hasRelatedWork W3334892 @default.
- W3100509703 hasRelatedWork W3750276 @default.
- W3100509703 hasRelatedWork W5705154 @default.
- W3100509703 hasRelatedWork W7942489 @default.
- W3100509703 hasRelatedWork W8144373 @default.
- W3100509703 isParatext "false" @default.
- W3100509703 isRetracted "false" @default.
- W3100509703 magId "3100509703" @default.
- W3100509703 workType "article" @default.