Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100516213> ?p ?o ?g. }
- W3100516213 abstract "Abstract Healthcare systems ideally should be able to draw lessons from historical data, including whether common exposures are associated with adverse clinical outcomes. Unfortunately, structured clinical data, such as encounter diagnostic codes in electronic health records, suffer from multiple limitations and biases, limiting effective learning. We hypothesized that a machine learning approach to automate ascertainment of clinical events and disease history from medical notes would improve upon using structured data and enable the estimation of real-world risks. We sought to test this approach to address a timely goal: estimating the delayed risk of adverse cardiovascular events (i.e. after the index infection) in patients infected with respiratory viruses. Using 4,151 cardiologist-labeled notes as gold standard, we trained a series of neural network models to automate event adjudication for heart failure hospitalization, acute coronary syndrome, stroke, and coronary revascularization and to identify past medical history for heart failure. Though performance varied by task, in nearly all cases, our models surpassed the use of structured data in terms of sensitivity for a given specificity level and enabled principled evaluation of classification thresholds, which is typically impossible to do with diagnostic codes. Deploying our models on more than 17 million notes for 267,596 patients across an extensive integrated delivery network, we found that patients infected with respiratory syncytial virus had a 23% increased risk of delayed heart failure hospitalization over a subsequent 4-year period compared with propensity-score matched patients who had the same test but with negative results (p = 0.003, log-rank). In contrast, we found no such increased risk in patients with a positive influenza viral test compared with a negative test (rate ratio 0.98, p = 0.71). We conclude that convolutional neural network-based models enable accurate clinical labeling at scale, thereby unlocking timely insights from unstructured clinical data." @default.
- W3100516213 created "2020-11-23" @default.
- W3100516213 creator A5000559979 @default.
- W3100516213 creator A5011056336 @default.
- W3100516213 creator A5018992472 @default.
- W3100516213 creator A5019708013 @default.
- W3100516213 creator A5026141445 @default.
- W3100516213 creator A5052863636 @default.
- W3100516213 creator A5056917994 @default.
- W3100516213 creator A5081903846 @default.
- W3100516213 creator A5084980436 @default.
- W3100516213 date "2020-11-16" @default.
- W3100516213 modified "2023-10-17" @default.
- W3100516213 title "Artificial intelligence-enabled event adjudication: estimating delayed cardiovascular effects of respiratory viruses" @default.
- W3100516213 cites W1779612606 @default.
- W3100516213 cites W1978209044 @default.
- W3100516213 cites W1989501142 @default.
- W3100516213 cites W1997057722 @default.
- W3100516213 cites W2107623405 @default.
- W3100516213 cites W2113138164 @default.
- W3100516213 cites W2139577967 @default.
- W3100516213 cites W2144409155 @default.
- W3100516213 cites W2493916176 @default.
- W3100516213 cites W2785715721 @default.
- W3100516213 cites W2789476578 @default.
- W3100516213 cites W2792588444 @default.
- W3100516213 cites W2795490028 @default.
- W3100516213 cites W2899792733 @default.
- W3100516213 cites W2922567074 @default.
- W3100516213 cites W3012747666 @default.
- W3100516213 cites W3013648910 @default.
- W3100516213 cites W3013949914 @default.
- W3100516213 cites W3017508977 @default.
- W3100516213 cites W3021844013 @default.
- W3100516213 cites W3033346947 @default.
- W3100516213 cites W3122757003 @default.
- W3100516213 doi "https://doi.org/10.1101/2020.11.12.20230706" @default.
- W3100516213 hasPublicationYear "2020" @default.
- W3100516213 type Work @default.
- W3100516213 sameAs 3100516213 @default.
- W3100516213 citedByCount "4" @default.
- W3100516213 countsByYear W31005162132021 @default.
- W3100516213 countsByYear W31005162132022 @default.
- W3100516213 countsByYear W31005162132023 @default.
- W3100516213 crossrefType "posted-content" @default.
- W3100516213 hasAuthorship W3100516213A5000559979 @default.
- W3100516213 hasAuthorship W3100516213A5011056336 @default.
- W3100516213 hasAuthorship W3100516213A5018992472 @default.
- W3100516213 hasAuthorship W3100516213A5019708013 @default.
- W3100516213 hasAuthorship W3100516213A5026141445 @default.
- W3100516213 hasAuthorship W3100516213A5052863636 @default.
- W3100516213 hasAuthorship W3100516213A5056917994 @default.
- W3100516213 hasAuthorship W3100516213A5081903846 @default.
- W3100516213 hasAuthorship W3100516213A5084980436 @default.
- W3100516213 hasBestOaLocation W31005162131 @default.
- W3100516213 hasConcept C121332964 @default.
- W3100516213 hasConcept C126322002 @default.
- W3100516213 hasConcept C154945302 @default.
- W3100516213 hasConcept C17744445 @default.
- W3100516213 hasConcept C177713679 @default.
- W3100516213 hasConcept C194828623 @default.
- W3100516213 hasConcept C195910791 @default.
- W3100516213 hasConcept C197934379 @default.
- W3100516213 hasConcept C199539241 @default.
- W3100516213 hasConcept C204434341 @default.
- W3100516213 hasConcept C206179267 @default.
- W3100516213 hasConcept C2777698277 @default.
- W3100516213 hasConcept C2778198053 @default.
- W3100516213 hasConcept C2779662365 @default.
- W3100516213 hasConcept C2908647359 @default.
- W3100516213 hasConcept C41008148 @default.
- W3100516213 hasConcept C45827449 @default.
- W3100516213 hasConcept C500558357 @default.
- W3100516213 hasConcept C62520636 @default.
- W3100516213 hasConcept C71924100 @default.
- W3100516213 hasConcept C99454951 @default.
- W3100516213 hasConceptScore W3100516213C121332964 @default.
- W3100516213 hasConceptScore W3100516213C126322002 @default.
- W3100516213 hasConceptScore W3100516213C154945302 @default.
- W3100516213 hasConceptScore W3100516213C17744445 @default.
- W3100516213 hasConceptScore W3100516213C177713679 @default.
- W3100516213 hasConceptScore W3100516213C194828623 @default.
- W3100516213 hasConceptScore W3100516213C195910791 @default.
- W3100516213 hasConceptScore W3100516213C197934379 @default.
- W3100516213 hasConceptScore W3100516213C199539241 @default.
- W3100516213 hasConceptScore W3100516213C204434341 @default.
- W3100516213 hasConceptScore W3100516213C206179267 @default.
- W3100516213 hasConceptScore W3100516213C2777698277 @default.
- W3100516213 hasConceptScore W3100516213C2778198053 @default.
- W3100516213 hasConceptScore W3100516213C2779662365 @default.
- W3100516213 hasConceptScore W3100516213C2908647359 @default.
- W3100516213 hasConceptScore W3100516213C41008148 @default.
- W3100516213 hasConceptScore W3100516213C45827449 @default.
- W3100516213 hasConceptScore W3100516213C500558357 @default.
- W3100516213 hasConceptScore W3100516213C62520636 @default.
- W3100516213 hasConceptScore W3100516213C71924100 @default.
- W3100516213 hasConceptScore W3100516213C99454951 @default.
- W3100516213 hasLocation W31005162131 @default.
- W3100516213 hasOpenAccess W3100516213 @default.
- W3100516213 hasPrimaryLocation W31005162131 @default.