Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100537819> ?p ?o ?g. }
- W3100537819 endingPage "28" @default.
- W3100537819 startingPage "22" @default.
- W3100537819 abstract "Nowadays the development of new functional materials/chemical compounds using machine learning (ML) techniques is a hot topic and includes several crucial steps, one of which is the choice of chemical structure representation. Classical approach of rigorous feature engineering in ML typically improves the performance of the predictive model, but at the same time, it narrows down the scope of applicability and decreases the physical interpretability of predicted results. In this study, we present graph convolutional neural networks (GCNN) as an architecture that allows to successfully predict the properties of compounds from diverse domains of chemical space, using a minimal set of meaningful descriptors. The applicability of GCNN models has been demonstrated by a wide range of chemical domain-specific properties. Their performance is comparable to state-of-the-art techniques; however, this architecture exempts from the need to carry out precise feature engineering." @default.
- W3100537819 created "2020-11-23" @default.
- W3100537819 creator A5016192450 @default.
- W3100537819 creator A5026145080 @default.
- W3100537819 creator A5070164801 @default.
- W3100537819 creator A5080981756 @default.
- W3100537819 date "2019-12-20" @default.
- W3100537819 modified "2023-10-10" @default.
- W3100537819 title "Graph Convolutional Neural Networks as “General-Purpose” Property Predictors: The Universality and Limits of Applicability" @default.
- W3100537819 cites W1940355499 @default.
- W3100537819 cites W1963663373 @default.
- W3100537819 cites W1976492731 @default.
- W3100537819 cites W1978430844 @default.
- W3100537819 cites W1988037271 @default.
- W3100537819 cites W1992985800 @default.
- W3100537819 cites W1993795323 @default.
- W3100537819 cites W2007207351 @default.
- W3100537819 cites W2013894207 @default.
- W3100537819 cites W2030976617 @default.
- W3100537819 cites W2031449719 @default.
- W3100537819 cites W2046675525 @default.
- W3100537819 cites W2048080607 @default.
- W3100537819 cites W2057562773 @default.
- W3100537819 cites W2075545717 @default.
- W3100537819 cites W2076115185 @default.
- W3100537819 cites W2080321486 @default.
- W3100537819 cites W2081635359 @default.
- W3100537819 cites W2117363206 @default.
- W3100537819 cites W2134329894 @default.
- W3100537819 cites W2139271038 @default.
- W3100537819 cites W2164524421 @default.
- W3100537819 cites W2171830166 @default.
- W3100537819 cites W2213443318 @default.
- W3100537819 cites W2230728100 @default.
- W3100537819 cites W2290847742 @default.
- W3100537819 cites W2306570595 @default.
- W3100537819 cites W2509907061 @default.
- W3100537819 cites W2527189750 @default.
- W3100537819 cites W2565212977 @default.
- W3100537819 cites W2582187633 @default.
- W3100537819 cites W2592684016 @default.
- W3100537819 cites W2594083602 @default.
- W3100537819 cites W2594183968 @default.
- W3100537819 cites W2602479554 @default.
- W3100537819 cites W2613791983 @default.
- W3100537819 cites W2620687153 @default.
- W3100537819 cites W2733963201 @default.
- W3100537819 cites W2750556263 @default.
- W3100537819 cites W2753962198 @default.
- W3100537819 cites W2766761250 @default.
- W3100537819 cites W2766856748 @default.
- W3100537819 cites W2770922882 @default.
- W3100537819 cites W2778051509 @default.
- W3100537819 cites W2795510410 @default.
- W3100537819 cites W2800722845 @default.
- W3100537819 cites W2803861156 @default.
- W3100537819 cites W2806547269 @default.
- W3100537819 cites W2919115771 @default.
- W3100537819 cites W2949095042 @default.
- W3100537819 cites W2963784900 @default.
- W3100537819 doi "https://doi.org/10.1021/acs.jcim.9b00587" @default.
- W3100537819 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31860296" @default.
- W3100537819 hasPublicationYear "2019" @default.
- W3100537819 type Work @default.
- W3100537819 sameAs 3100537819 @default.
- W3100537819 citedByCount "54" @default.
- W3100537819 countsByYear W31005378192020 @default.
- W3100537819 countsByYear W31005378192021 @default.
- W3100537819 countsByYear W31005378192022 @default.
- W3100537819 countsByYear W31005378192023 @default.
- W3100537819 crossrefType "journal-article" @default.
- W3100537819 hasAuthorship W3100537819A5016192450 @default.
- W3100537819 hasAuthorship W3100537819A5026145080 @default.
- W3100537819 hasAuthorship W3100537819A5070164801 @default.
- W3100537819 hasAuthorship W3100537819A5080981756 @default.
- W3100537819 hasBestOaLocation W31005378192 @default.
- W3100537819 hasConcept C108583219 @default.
- W3100537819 hasConcept C111472728 @default.
- W3100537819 hasConcept C119857082 @default.
- W3100537819 hasConcept C121332964 @default.
- W3100537819 hasConcept C123657996 @default.
- W3100537819 hasConcept C132525143 @default.
- W3100537819 hasConcept C138885662 @default.
- W3100537819 hasConcept C142362112 @default.
- W3100537819 hasConcept C153349607 @default.
- W3100537819 hasConcept C154945302 @default.
- W3100537819 hasConcept C183992945 @default.
- W3100537819 hasConcept C185592680 @default.
- W3100537819 hasConcept C189950617 @default.
- W3100537819 hasConcept C2776401178 @default.
- W3100537819 hasConcept C2778827112 @default.
- W3100537819 hasConcept C2781067378 @default.
- W3100537819 hasConcept C41008148 @default.
- W3100537819 hasConcept C41895202 @default.
- W3100537819 hasConcept C55493867 @default.
- W3100537819 hasConcept C62520636 @default.
- W3100537819 hasConcept C74187038 @default.
- W3100537819 hasConcept C80444323 @default.