Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100545487> ?p ?o ?g. }
- W3100545487 endingPage "6128" @default.
- W3100545487 startingPage "6118" @default.
- W3100545487 abstract "Abstract The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule‐based expert system in the reaction prediction task for 180 000 randomly selected binary reactions. The data‐driven model generalises even beyond known reaction types, and is thus capable of effectively (re‐)discovering novel transformations (even including transition metal‐catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub‐second time frame, the model can be used as a high‐throughput generator of reaction hypotheses for reaction discovery." @default.
- W3100545487 created "2020-11-23" @default.
- W3100545487 creator A5007543032 @default.
- W3100545487 creator A5066929221 @default.
- W3100545487 date "2017-01-04" @default.
- W3100545487 modified "2023-10-16" @default.
- W3100545487 title "Modelling Chemical Reasoning to Predict and Invent Reactions" @default.
- W3100545487 cites W1174108660 @default.
- W3100545487 cites W1550710032 @default.
- W3100545487 cites W1643512742 @default.
- W3100545487 cites W1644674171 @default.
- W3100545487 cites W1971044734 @default.
- W3100545487 cites W1972035983 @default.
- W3100545487 cites W1973166400 @default.
- W3100545487 cites W1977214927 @default.
- W3100545487 cites W1979465023 @default.
- W3100545487 cites W1981939086 @default.
- W3100545487 cites W1986637211 @default.
- W3100545487 cites W1988037271 @default.
- W3100545487 cites W1998328515 @default.
- W3100545487 cites W1998751443 @default.
- W3100545487 cites W2003722831 @default.
- W3100545487 cites W2019567419 @default.
- W3100545487 cites W2019678805 @default.
- W3100545487 cites W2022117741 @default.
- W3100545487 cites W2029509946 @default.
- W3100545487 cites W2037825667 @default.
- W3100545487 cites W2040103915 @default.
- W3100545487 cites W2041874651 @default.
- W3100545487 cites W2052882499 @default.
- W3100545487 cites W2056701057 @default.
- W3100545487 cites W2060586571 @default.
- W3100545487 cites W2064535969 @default.
- W3100545487 cites W2066412916 @default.
- W3100545487 cites W2070933410 @default.
- W3100545487 cites W2081682699 @default.
- W3100545487 cites W2089738674 @default.
- W3100545487 cites W2093371352 @default.
- W3100545487 cites W2094607624 @default.
- W3100545487 cites W2096032392 @default.
- W3100545487 cites W2097733226 @default.
- W3100545487 cites W2100301665 @default.
- W3100545487 cites W2101582871 @default.
- W3100545487 cites W2103581950 @default.
- W3100545487 cites W2117043211 @default.
- W3100545487 cites W2148797284 @default.
- W3100545487 cites W2162846787 @default.
- W3100545487 cites W2176906522 @default.
- W3100545487 cites W2323373433 @default.
- W3100545487 cites W2326892341 @default.
- W3100545487 cites W2328708083 @default.
- W3100545487 cites W2466897053 @default.
- W3100545487 cites W2538573120 @default.
- W3100545487 cites W3102693939 @default.
- W3100545487 cites W4231262641 @default.
- W3100545487 cites W4232932184 @default.
- W3100545487 cites W4234405069 @default.
- W3100545487 cites W4246199212 @default.
- W3100545487 cites W4251903194 @default.
- W3100545487 cites W2038562710 @default.
- W3100545487 doi "https://doi.org/10.1002/chem.201604556" @default.
- W3100545487 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27862477" @default.
- W3100545487 hasPublicationYear "2017" @default.
- W3100545487 type Work @default.
- W3100545487 sameAs 3100545487 @default.
- W3100545487 citedByCount "148" @default.
- W3100545487 countsByYear W31005454872017 @default.
- W3100545487 countsByYear W31005454872018 @default.
- W3100545487 countsByYear W31005454872019 @default.
- W3100545487 countsByYear W31005454872020 @default.
- W3100545487 countsByYear W31005454872021 @default.
- W3100545487 countsByYear W31005454872022 @default.
- W3100545487 countsByYear W31005454872023 @default.
- W3100545487 crossrefType "journal-article" @default.
- W3100545487 hasAuthorship W3100545487A5007543032 @default.
- W3100545487 hasAuthorship W3100545487A5066929221 @default.
- W3100545487 hasBestOaLocation W31005454872 @default.
- W3100545487 hasConcept C121332964 @default.
- W3100545487 hasConcept C132525143 @default.
- W3100545487 hasConcept C154945302 @default.
- W3100545487 hasConcept C163258240 @default.
- W3100545487 hasConcept C177801218 @default.
- W3100545487 hasConcept C185592680 @default.
- W3100545487 hasConcept C2780992000 @default.
- W3100545487 hasConcept C33923547 @default.
- W3100545487 hasConcept C41008148 @default.
- W3100545487 hasConcept C48372109 @default.
- W3100545487 hasConcept C55493867 @default.
- W3100545487 hasConcept C62520636 @default.
- W3100545487 hasConcept C80444323 @default.
- W3100545487 hasConcept C94375191 @default.
- W3100545487 hasConceptScore W3100545487C121332964 @default.
- W3100545487 hasConceptScore W3100545487C132525143 @default.
- W3100545487 hasConceptScore W3100545487C154945302 @default.
- W3100545487 hasConceptScore W3100545487C163258240 @default.
- W3100545487 hasConceptScore W3100545487C177801218 @default.
- W3100545487 hasConceptScore W3100545487C185592680 @default.
- W3100545487 hasConceptScore W3100545487C2780992000 @default.