Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100549108> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3100549108 abstract "In this chapter we will describe some of the early quantum algorithms. These algorithms are simple and illustrate the main ingredients behind the more useful and powerful quantum algorithms we describe in the subsequent chapters. Since quantum algorithms share some features with classical probabilistic algorithms, we will start with a comparison of the two algorithmic paradigms. Classical probabilistic algorithms were introduced in Chapter 1. In this section we will see how quantum computation can be viewed as a generalization of probabilistic computation. We begin by considering a simple probabilistic computation. Figure 6.1 illustrates the first two steps of such a computation on a register that can be in one of the four states, labelled by the integers 0, 1, 2, and 3. Initially the register is in the state 0. After the first step of the computation, the register is in the state j with probability p0,j . For example, the probability that the computation is in state 2 after the first step is p0,2. In the second step of the computation, the register goes from state j to state k with probability qj,k. For example, in the second step the computation proceeds from state 2 to state 3 with probability q2,3. Suppose we want to find the total probability that the computation ends up in state 3 after the second step. This is calculated by first determining the probability associated with each computation ‘path’ that could end up at the state 3, and then by adding the probabilities for all such paths. There are four computation paths that can leave the computation in state 3 after the first step. The computation can proceed from state 0 to state j and then from state j to state 3, for any of the four j ∊ {0, 1, 2, 3}. The probability associated with any one of these paths is obtained by multiplying the probability p0,j of the transition from state 0 to state j, with the probability qj,3 of the transition from state j to state 3." @default.
- W3100549108 created "2020-11-23" @default.
- W3100549108 creator A5009567571 @default.
- W3100549108 creator A5010255094 @default.
- W3100549108 creator A5078255491 @default.
- W3100549108 date "2006-11-16" @default.
- W3100549108 modified "2023-09-25" @default.
- W3100549108 title "Introductory Quantum Algorithms" @default.
- W3100549108 doi "https://doi.org/10.1093/oso/9780198570004.003.0009" @default.
- W3100549108 hasPublicationYear "2006" @default.
- W3100549108 type Work @default.
- W3100549108 sameAs 3100549108 @default.
- W3100549108 citedByCount "0" @default.
- W3100549108 crossrefType "book-chapter" @default.
- W3100549108 hasAuthorship W3100549108A5009567571 @default.
- W3100549108 hasAuthorship W3100549108A5010255094 @default.
- W3100549108 hasAuthorship W3100549108A5078255491 @default.
- W3100549108 hasConcept C11413529 @default.
- W3100549108 hasConcept C121332964 @default.
- W3100549108 hasConcept C134306372 @default.
- W3100549108 hasConcept C137019171 @default.
- W3100549108 hasConcept C154945302 @default.
- W3100549108 hasConcept C177148314 @default.
- W3100549108 hasConcept C33923547 @default.
- W3100549108 hasConcept C41008148 @default.
- W3100549108 hasConcept C45374587 @default.
- W3100549108 hasConcept C48103436 @default.
- W3100549108 hasConcept C49937458 @default.
- W3100549108 hasConcept C58053490 @default.
- W3100549108 hasConcept C62520636 @default.
- W3100549108 hasConcept C80444323 @default.
- W3100549108 hasConcept C84114770 @default.
- W3100549108 hasConceptScore W3100549108C11413529 @default.
- W3100549108 hasConceptScore W3100549108C121332964 @default.
- W3100549108 hasConceptScore W3100549108C134306372 @default.
- W3100549108 hasConceptScore W3100549108C137019171 @default.
- W3100549108 hasConceptScore W3100549108C154945302 @default.
- W3100549108 hasConceptScore W3100549108C177148314 @default.
- W3100549108 hasConceptScore W3100549108C33923547 @default.
- W3100549108 hasConceptScore W3100549108C41008148 @default.
- W3100549108 hasConceptScore W3100549108C45374587 @default.
- W3100549108 hasConceptScore W3100549108C48103436 @default.
- W3100549108 hasConceptScore W3100549108C49937458 @default.
- W3100549108 hasConceptScore W3100549108C58053490 @default.
- W3100549108 hasConceptScore W3100549108C62520636 @default.
- W3100549108 hasConceptScore W3100549108C80444323 @default.
- W3100549108 hasConceptScore W3100549108C84114770 @default.
- W3100549108 hasLocation W31005491081 @default.
- W3100549108 hasOpenAccess W3100549108 @default.
- W3100549108 hasPrimaryLocation W31005491081 @default.
- W3100549108 hasRelatedWork W10287351 @default.
- W3100549108 hasRelatedWork W10809224 @default.
- W3100549108 hasRelatedWork W12119315 @default.
- W3100549108 hasRelatedWork W13214723 @default.
- W3100549108 hasRelatedWork W3635538 @default.
- W3100549108 hasRelatedWork W4255153 @default.
- W3100549108 hasRelatedWork W4624868 @default.
- W3100549108 hasRelatedWork W528190 @default.
- W3100549108 hasRelatedWork W9167306 @default.
- W3100549108 hasRelatedWork W9813720 @default.
- W3100549108 isParatext "false" @default.
- W3100549108 isRetracted "false" @default.
- W3100549108 magId "3100549108" @default.
- W3100549108 workType "book-chapter" @default.