Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100557905> ?p ?o ?g. }
- W3100557905 endingPage "1530" @default.
- W3100557905 startingPage "1516" @default.
- W3100557905 abstract "Replicated network data are increasingly available in many research fields. In connectomic applications, inter-connections among brain regions are collected for each patient under study, motivating statistical models which can flexibly characterize the probabilistic generative mechanism underlying these network-valued data. Available models for a single network are not designed specifically for inference on the entire probability mass function of a network-valued random variable and therefore lack flexibility in characterizing the distribution of relevant topological structures. We propose a flexible Bayesian nonparametric approach for modeling the population distribution of network-valued data. The joint distribution of the edges is defined via a mixture model which reduces dimensionality and efficiently incorporates network information within each mixture component by leveraging latent space representations. The formulation leads to an efficient Gibbs sampler and provides simple and coherent strategies for inference and goodness-of-fit assessments. We provide theoretical results on the flexibility of our model and illustrate improved performance --- compared to state-of-the-art models --- in simulations and application to human brain networks." @default.
- W3100557905 created "2020-11-23" @default.
- W3100557905 creator A5002768909 @default.
- W3100557905 creator A5065441417 @default.
- W3100557905 creator A5068162496 @default.
- W3100557905 date "2017-07-06" @default.
- W3100557905 modified "2023-09-25" @default.
- W3100557905 title "Nonparametric Bayes Modeling of Populations of Networks" @default.
- W3100557905 cites W1732489270 @default.
- W3100557905 cites W1827214880 @default.
- W3100557905 cites W1988698355 @default.
- W3100557905 cites W1992605514 @default.
- W3100557905 cites W1999653836 @default.
- W3100557905 cites W2008620264 @default.
- W3100557905 cites W2019144999 @default.
- W3100557905 cites W2024165284 @default.
- W3100557905 cites W2029721016 @default.
- W3100557905 cites W2062896642 @default.
- W3100557905 cites W2063497316 @default.
- W3100557905 cites W2064676839 @default.
- W3100557905 cites W2066076115 @default.
- W3100557905 cites W2066459332 @default.
- W3100557905 cites W2068324025 @default.
- W3100557905 cites W2070323919 @default.
- W3100557905 cites W2076423950 @default.
- W3100557905 cites W2080403608 @default.
- W3100557905 cites W2083599041 @default.
- W3100557905 cites W2091419931 @default.
- W3100557905 cites W2093308813 @default.
- W3100557905 cites W2096091969 @default.
- W3100557905 cites W2098216772 @default.
- W3100557905 cites W2099878672 @default.
- W3100557905 cites W2101135654 @default.
- W3100557905 cites W2111360832 @default.
- W3100557905 cites W2112090702 @default.
- W3100557905 cites W2123082179 @default.
- W3100557905 cites W2129084324 @default.
- W3100557905 cites W2140854449 @default.
- W3100557905 cites W2144799688 @default.
- W3100557905 cites W2147140611 @default.
- W3100557905 cites W2148443418 @default.
- W3100557905 cites W2151792436 @default.
- W3100557905 cites W2159009490 @default.
- W3100557905 cites W2159929956 @default.
- W3100557905 cites W2167482691 @default.
- W3100557905 cites W3104477937 @default.
- W3100557905 cites W4234057457 @default.
- W3100557905 cites W4248681815 @default.
- W3100557905 cites W4292156489 @default.
- W3100557905 doi "https://doi.org/10.1080/01621459.2016.1219260" @default.
- W3100557905 hasPublicationYear "2017" @default.
- W3100557905 type Work @default.
- W3100557905 sameAs 3100557905 @default.
- W3100557905 citedByCount "60" @default.
- W3100557905 countsByYear W31005579052014 @default.
- W3100557905 countsByYear W31005579052015 @default.
- W3100557905 countsByYear W31005579052016 @default.
- W3100557905 countsByYear W31005579052017 @default.
- W3100557905 countsByYear W31005579052018 @default.
- W3100557905 countsByYear W31005579052019 @default.
- W3100557905 countsByYear W31005579052020 @default.
- W3100557905 countsByYear W31005579052021 @default.
- W3100557905 countsByYear W31005579052022 @default.
- W3100557905 countsByYear W31005579052023 @default.
- W3100557905 crossrefType "journal-article" @default.
- W3100557905 hasAuthorship W3100557905A5002768909 @default.
- W3100557905 hasAuthorship W3100557905A5065441417 @default.
- W3100557905 hasAuthorship W3100557905A5068162496 @default.
- W3100557905 hasBestOaLocation W31005579052 @default.
- W3100557905 hasConcept C102366305 @default.
- W3100557905 hasConcept C105795698 @default.
- W3100557905 hasConcept C107673813 @default.
- W3100557905 hasConcept C111030470 @default.
- W3100557905 hasConcept C114289077 @default.
- W3100557905 hasConcept C119857082 @default.
- W3100557905 hasConcept C124101348 @default.
- W3100557905 hasConcept C134261354 @default.
- W3100557905 hasConcept C144024400 @default.
- W3100557905 hasConcept C149782125 @default.
- W3100557905 hasConcept C149923435 @default.
- W3100557905 hasConcept C154945302 @default.
- W3100557905 hasConcept C167966045 @default.
- W3100557905 hasConcept C18653775 @default.
- W3100557905 hasConcept C207201462 @default.
- W3100557905 hasConcept C2776214188 @default.
- W3100557905 hasConcept C2780598303 @default.
- W3100557905 hasConcept C2908647359 @default.
- W3100557905 hasConcept C33724603 @default.
- W3100557905 hasConcept C33923547 @default.
- W3100557905 hasConcept C39890363 @default.
- W3100557905 hasConcept C41008148 @default.
- W3100557905 hasConcept C49937458 @default.
- W3100557905 hasConceptScore W3100557905C102366305 @default.
- W3100557905 hasConceptScore W3100557905C105795698 @default.
- W3100557905 hasConceptScore W3100557905C107673813 @default.
- W3100557905 hasConceptScore W3100557905C111030470 @default.
- W3100557905 hasConceptScore W3100557905C114289077 @default.
- W3100557905 hasConceptScore W3100557905C119857082 @default.