Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100561351> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3100561351 endingPage "6374" @default.
- W3100561351 startingPage "6361" @default.
- W3100561351 abstract "Classification of very high resolution (VHR) satellite images has three major challenges: 1) inherent low intra-class and high inter-class spectral similarities, 2) mismatching resolution of available bands, and 3) the need to regularize noisy classification maps. Conventional methods have addressed these challenges by adopting separate stages of image fusion, feature extraction, and post-classification map regularization. These processing stages, however, are not jointly optimizing the classification task at hand. In this study, we propose a single-stage framework embedding the processing stages in a recurrent multiresolution convolutional network trained in an end-to-end manner. The feedforward version of the network, called FuseNet, aims to match the resolution of the panchromatic and multispectral bands in a VHR image using convolutional layers with corresponding downsampling and upsampling operations. Contextual label information is incorporated into FuseNet by means of a recurrent version called ReuseNet. We compared FuseNet and ReuseNet against the use of separate processing steps for both image fusion, e.g. pansharpening and resampling through interpolation, and map regularization such as conditional random fields. We carried out our experiments on a land cover classification task using a Worldview-03 image of Quezon City, Philippines and the ISPRS 2D semantic labeling benchmark dataset of Vaihingen, Germany. FuseNet and ReuseNet surpass the baseline approaches in both quantitative and qualitative results." @default.
- W3100561351 created "2020-11-23" @default.
- W3100561351 creator A5006207870 @default.
- W3100561351 creator A5029035818 @default.
- W3100561351 creator A5082935691 @default.
- W3100561351 date "2018-11-01" @default.
- W3100561351 modified "2023-10-14" @default.
- W3100561351 title "Recurrent Multiresolution Convolutional Networks for VHR Image Classification" @default.
- W3100561351 cites W1485981043 @default.
- W3100561351 cites W1515020792 @default.
- W3100561351 cites W1677182931 @default.
- W3100561351 cites W1745334888 @default.
- W3100561351 cites W1903029394 @default.
- W3100561351 cites W1955857676 @default.
- W3100561351 cites W2001298023 @default.
- W3100561351 cites W2039459402 @default.
- W3100561351 cites W2042525981 @default.
- W3100561351 cites W2044465660 @default.
- W3100561351 cites W2088805832 @default.
- W3100561351 cites W2108159992 @default.
- W3100561351 cites W2112796928 @default.
- W3100561351 cites W2116360511 @default.
- W3100561351 cites W2127199143 @default.
- W3100561351 cites W2163352848 @default.
- W3100561351 cites W2194775991 @default.
- W3100561351 cites W2412782625 @default.
- W3100561351 cites W2484692031 @default.
- W3100561351 cites W2538244214 @default.
- W3100561351 cites W2548960422 @default.
- W3100561351 cites W2605486153 @default.
- W3100561351 cites W2607353926 @default.
- W3100561351 cites W2621187594 @default.
- W3100561351 cites W2758333383 @default.
- W3100561351 cites W2765226977 @default.
- W3100561351 cites W2766673287 @default.
- W3100561351 cites W2963881378 @default.
- W3100561351 cites W3105127913 @default.
- W3100561351 doi "https://doi.org/10.1109/tgrs.2018.2837357" @default.
- W3100561351 hasPublicationYear "2018" @default.
- W3100561351 type Work @default.
- W3100561351 sameAs 3100561351 @default.
- W3100561351 citedByCount "53" @default.
- W3100561351 countsByYear W31005613512018 @default.
- W3100561351 countsByYear W31005613512019 @default.
- W3100561351 countsByYear W31005613512020 @default.
- W3100561351 countsByYear W31005613512021 @default.
- W3100561351 countsByYear W31005613512022 @default.
- W3100561351 countsByYear W31005613512023 @default.
- W3100561351 crossrefType "journal-article" @default.
- W3100561351 hasAuthorship W3100561351A5006207870 @default.
- W3100561351 hasAuthorship W3100561351A5029035818 @default.
- W3100561351 hasAuthorship W3100561351A5082935691 @default.
- W3100561351 hasBestOaLocation W31005613512 @default.
- W3100561351 hasConcept C107445234 @default.
- W3100561351 hasConcept C110384440 @default.
- W3100561351 hasConcept C115961682 @default.
- W3100561351 hasConcept C153180895 @default.
- W3100561351 hasConcept C154945302 @default.
- W3100561351 hasConcept C173163844 @default.
- W3100561351 hasConcept C205372480 @default.
- W3100561351 hasConcept C41008148 @default.
- W3100561351 hasConcept C52622490 @default.
- W3100561351 hasConcept C75294576 @default.
- W3100561351 hasConcept C81363708 @default.
- W3100561351 hasConceptScore W3100561351C107445234 @default.
- W3100561351 hasConceptScore W3100561351C110384440 @default.
- W3100561351 hasConceptScore W3100561351C115961682 @default.
- W3100561351 hasConceptScore W3100561351C153180895 @default.
- W3100561351 hasConceptScore W3100561351C154945302 @default.
- W3100561351 hasConceptScore W3100561351C173163844 @default.
- W3100561351 hasConceptScore W3100561351C205372480 @default.
- W3100561351 hasConceptScore W3100561351C41008148 @default.
- W3100561351 hasConceptScore W3100561351C52622490 @default.
- W3100561351 hasConceptScore W3100561351C75294576 @default.
- W3100561351 hasConceptScore W3100561351C81363708 @default.
- W3100561351 hasIssue "11" @default.
- W3100561351 hasLocation W31005613511 @default.
- W3100561351 hasLocation W31005613512 @default.
- W3100561351 hasLocation W31005613513 @default.
- W3100561351 hasLocation W31005613514 @default.
- W3100561351 hasLocation W31005613515 @default.
- W3100561351 hasOpenAccess W3100561351 @default.
- W3100561351 hasPrimaryLocation W31005613511 @default.
- W3100561351 hasRelatedWork W2004913087 @default.
- W3100561351 hasRelatedWork W2014128063 @default.
- W3100561351 hasRelatedWork W2053295068 @default.
- W3100561351 hasRelatedWork W2079530868 @default.
- W3100561351 hasRelatedWork W2406522397 @default.
- W3100561351 hasRelatedWork W2585003870 @default.
- W3100561351 hasRelatedWork W2891330445 @default.
- W3100561351 hasRelatedWork W2900524165 @default.
- W3100561351 hasRelatedWork W2912288872 @default.
- W3100561351 hasRelatedWork W4385338437 @default.
- W3100561351 hasVolume "56" @default.
- W3100561351 isParatext "false" @default.
- W3100561351 isRetracted "false" @default.
- W3100561351 magId "3100561351" @default.
- W3100561351 workType "article" @default.