Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100566623> ?p ?o ?g. }
- W3100566623 endingPage "073023" @default.
- W3100566623 startingPage "073023" @default.
- W3100566623 abstract "Abstract Optimization problems in disciplines such as machine learning are commonly solved with iterative methods. Gradient descent algorithms find local minima by moving along the direction of steepest descent while Newton’s method takes into account curvature information and thereby often improves convergence. Here, we develop quantum versions of these iterative optimization algorithms and apply them to polynomial optimization with a unit norm constraint. In each step, multiple copies of the current candidate are used to improve the candidate using quantum phase estimation, an adapted quantum state exponentiation scheme, as well as quantum matrix multiplications and inversions. The required operations perform polylogarithmically in the dimension of the solution vector and exponentially in the number of iterations. Therefore, the quantum algorithm can be useful for high-dimensional problems where a small number of iterations is sufficient." @default.
- W3100566623 created "2020-11-23" @default.
- W3100566623 creator A5003208881 @default.
- W3100566623 creator A5016421311 @default.
- W3100566623 creator A5038060570 @default.
- W3100566623 creator A5073832417 @default.
- W3100566623 creator A5081919424 @default.
- W3100566623 date "2019-07-01" @default.
- W3100566623 modified "2023-10-12" @default.
- W3100566623 title "Quantum gradient descent and Newton’s method for constrained polynomial optimization" @default.
- W3100566623 cites W1492999010 @default.
- W3100566623 cites W1981783889 @default.
- W3100566623 cites W1988369744 @default.
- W3100566623 cites W2013243898 @default.
- W3100566623 cites W2040006905 @default.
- W3100566623 cites W2051446825 @default.
- W3100566623 cites W2062938319 @default.
- W3100566623 cites W2072498431 @default.
- W3100566623 cites W2076426934 @default.
- W3100566623 cites W2086102856 @default.
- W3100566623 cites W2094908058 @default.
- W3100566623 cites W2096334625 @default.
- W3100566623 cites W2103956991 @default.
- W3100566623 cites W2121981260 @default.
- W3100566623 cites W2136922672 @default.
- W3100566623 cites W2161685427 @default.
- W3100566623 cites W2162988958 @default.
- W3100566623 cites W2415656260 @default.
- W3100566623 cites W2489886790 @default.
- W3100566623 cites W2490964415 @default.
- W3100566623 cites W2517233404 @default.
- W3100566623 cites W2761673598 @default.
- W3100566623 cites W2766294686 @default.
- W3100566623 cites W2775106578 @default.
- W3100566623 cites W3011600946 @default.
- W3100566623 cites W4231109964 @default.
- W3100566623 doi "https://doi.org/10.1088/1367-2630/ab2a9e" @default.
- W3100566623 hasPublicationYear "2019" @default.
- W3100566623 type Work @default.
- W3100566623 sameAs 3100566623 @default.
- W3100566623 citedByCount "71" @default.
- W3100566623 countsByYear W31005666232018 @default.
- W3100566623 countsByYear W31005666232019 @default.
- W3100566623 countsByYear W31005666232020 @default.
- W3100566623 countsByYear W31005666232021 @default.
- W3100566623 countsByYear W31005666232022 @default.
- W3100566623 countsByYear W31005666232023 @default.
- W3100566623 crossrefType "journal-article" @default.
- W3100566623 hasAuthorship W3100566623A5003208881 @default.
- W3100566623 hasAuthorship W3100566623A5016421311 @default.
- W3100566623 hasAuthorship W3100566623A5038060570 @default.
- W3100566623 hasAuthorship W3100566623A5073832417 @default.
- W3100566623 hasAuthorship W3100566623A5081919424 @default.
- W3100566623 hasBestOaLocation W31005666231 @default.
- W3100566623 hasConcept C11413529 @default.
- W3100566623 hasConcept C116149140 @default.
- W3100566623 hasConcept C117898588 @default.
- W3100566623 hasConcept C119857082 @default.
- W3100566623 hasConcept C121332964 @default.
- W3100566623 hasConcept C126255220 @default.
- W3100566623 hasConcept C134306372 @default.
- W3100566623 hasConcept C137019171 @default.
- W3100566623 hasConcept C153258448 @default.
- W3100566623 hasConcept C159694833 @default.
- W3100566623 hasConcept C162324750 @default.
- W3100566623 hasConcept C179127668 @default.
- W3100566623 hasConcept C186633575 @default.
- W3100566623 hasConcept C192122513 @default.
- W3100566623 hasConcept C202444582 @default.
- W3100566623 hasConcept C2777303404 @default.
- W3100566623 hasConcept C28826006 @default.
- W3100566623 hasConcept C33676613 @default.
- W3100566623 hasConcept C33923547 @default.
- W3100566623 hasConcept C41008148 @default.
- W3100566623 hasConcept C50522688 @default.
- W3100566623 hasConcept C50644808 @default.
- W3100566623 hasConcept C51003876 @default.
- W3100566623 hasConcept C62520636 @default.
- W3100566623 hasConcept C84114770 @default.
- W3100566623 hasConcept C90119067 @default.
- W3100566623 hasConceptScore W3100566623C11413529 @default.
- W3100566623 hasConceptScore W3100566623C116149140 @default.
- W3100566623 hasConceptScore W3100566623C117898588 @default.
- W3100566623 hasConceptScore W3100566623C119857082 @default.
- W3100566623 hasConceptScore W3100566623C121332964 @default.
- W3100566623 hasConceptScore W3100566623C126255220 @default.
- W3100566623 hasConceptScore W3100566623C134306372 @default.
- W3100566623 hasConceptScore W3100566623C137019171 @default.
- W3100566623 hasConceptScore W3100566623C153258448 @default.
- W3100566623 hasConceptScore W3100566623C159694833 @default.
- W3100566623 hasConceptScore W3100566623C162324750 @default.
- W3100566623 hasConceptScore W3100566623C179127668 @default.
- W3100566623 hasConceptScore W3100566623C186633575 @default.
- W3100566623 hasConceptScore W3100566623C192122513 @default.
- W3100566623 hasConceptScore W3100566623C202444582 @default.
- W3100566623 hasConceptScore W3100566623C2777303404 @default.
- W3100566623 hasConceptScore W3100566623C28826006 @default.
- W3100566623 hasConceptScore W3100566623C33676613 @default.