Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100573144> ?p ?o ?g. }
- W3100573144 endingPage "A69" @default.
- W3100573144 startingPage "A69" @default.
- W3100573144 abstract "The inner edge of the classical habitable zone is often defined by the critical flux needed to trigger the runaway greenhouse instability. This 1D notion of a critical flux, however, may not be all that relevant for inhomogeneously irradiated planets, or when the water content is limited (land planets). Based on results from our 3D global climate model, we present general features of the climate and large-scale circulation on close-in terrestrial planets. We find that the circulation pattern can shift from super-rotation to stellar/anti stellar circulation when the equatorial Rossby deformation radius significantly exceeds the planetary radius, changing the redistribution properties of the atmosphere. Using analytical and numerical arguments, we also demonstrate the presence of systematic biases among mean surface temperatures and among temperature profiles predicted from either 1D or 3D simulations. After including a complete modeling of the water cycle, we further demonstrate that two stable climate regimes can exist for land planets closer than the inner edge of the classical habitable zone. One is the classical runaway state where all the water is vaporized, and the other is a collapsed state where water is captured in permanent cold traps. We identify this “moist” bistability as the result of a competition between the greenhouse effect of water vapor and its condensation on the night side or near the poles, highlighting the dynamical nature of the runaway greenhouse effect. We also present synthetic spectra showing the observable signature of these two states. Taking the example of two prototype planets in this regime, namely Gl 581 c and HD 85512 b, we argue that depending on the rate of water delivery and atmospheric escape during the life of these planets, they could accumulate a significant amount of water ice at their surface. If such a thick ice cap is present, various physical mechanisms observed on Earth (e.g., gravity driven ice flows, geothermal flux) should come into play to produce long-lived liquid water at the edge and/or bottom of the ice cap. Consequently, the habitability of planets at smaller orbital distance than the inner edge of the classical habitable zone cannot be ruled out. Transiting planets in this regime represent promising targets for upcoming exoplanet characterization observatories, such as EChO and JWST." @default.
- W3100573144 created "2020-11-23" @default.
- W3100573144 creator A5007598001 @default.
- W3100573144 creator A5008616086 @default.
- W3100573144 creator A5008740857 @default.
- W3100573144 creator A5032417600 @default.
- W3100573144 creator A5038874544 @default.
- W3100573144 creator A5039459370 @default.
- W3100573144 creator A5051099357 @default.
- W3100573144 date "2013-06-01" @default.
- W3100573144 modified "2023-10-14" @default.
- W3100573144 title "3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability" @default.
- W3100573144 cites W1498891724 @default.
- W3100573144 cites W1539041623 @default.
- W3100573144 cites W1627075293 @default.
- W3100573144 cites W1841220915 @default.
- W3100573144 cites W1906512219 @default.
- W3100573144 cites W1968152463 @default.
- W3100573144 cites W1969516222 @default.
- W3100573144 cites W1972515060 @default.
- W3100573144 cites W1982678971 @default.
- W3100573144 cites W1993009622 @default.
- W3100573144 cites W1993091516 @default.
- W3100573144 cites W1997726543 @default.
- W3100573144 cites W2009550312 @default.
- W3100573144 cites W2010150045 @default.
- W3100573144 cites W2016425269 @default.
- W3100573144 cites W2016732866 @default.
- W3100573144 cites W2017171309 @default.
- W3100573144 cites W2017853765 @default.
- W3100573144 cites W2022975729 @default.
- W3100573144 cites W2023128436 @default.
- W3100573144 cites W2026780118 @default.
- W3100573144 cites W2034569230 @default.
- W3100573144 cites W2035697154 @default.
- W3100573144 cites W2035776311 @default.
- W3100573144 cites W2046995291 @default.
- W3100573144 cites W2063691843 @default.
- W3100573144 cites W2064065475 @default.
- W3100573144 cites W2065036178 @default.
- W3100573144 cites W2066821353 @default.
- W3100573144 cites W2079905556 @default.
- W3100573144 cites W2092777933 @default.
- W3100573144 cites W2093634884 @default.
- W3100573144 cites W2094368610 @default.
- W3100573144 cites W2097542093 @default.
- W3100573144 cites W2106231443 @default.
- W3100573144 cites W2118697507 @default.
- W3100573144 cites W2120670287 @default.
- W3100573144 cites W2121777451 @default.
- W3100573144 cites W2135164387 @default.
- W3100573144 cites W2135607622 @default.
- W3100573144 cites W2135817761 @default.
- W3100573144 cites W2161310714 @default.
- W3100573144 cites W2162157893 @default.
- W3100573144 cites W2167076951 @default.
- W3100573144 cites W2167538092 @default.
- W3100573144 cites W2169233615 @default.
- W3100573144 cites W2171310187 @default.
- W3100573144 cites W2172650310 @default.
- W3100573144 cites W2174335611 @default.
- W3100573144 cites W2528739051 @default.
- W3100573144 cites W2952689821 @default.
- W3100573144 cites W3098732753 @default.
- W3100573144 cites W3099320304 @default.
- W3100573144 cites W3101399410 @default.
- W3100573144 cites W3102514863 @default.
- W3100573144 cites W3102762255 @default.
- W3100573144 cites W3103265921 @default.
- W3100573144 cites W3106508573 @default.
- W3100573144 cites W3121429418 @default.
- W3100573144 cites W3121965341 @default.
- W3100573144 cites W316960121 @default.
- W3100573144 cites W4205182410 @default.
- W3100573144 cites W4210854714 @default.
- W3100573144 cites W4237204345 @default.
- W3100573144 cites W4292954813 @default.
- W3100573144 cites W4293717724 @default.
- W3100573144 doi "https://doi.org/10.1051/0004-6361/201321042" @default.
- W3100573144 hasPublicationYear "2013" @default.
- W3100573144 type Work @default.
- W3100573144 sameAs 3100573144 @default.
- W3100573144 citedByCount "202" @default.
- W3100573144 countsByYear W31005731442013 @default.
- W3100573144 countsByYear W31005731442014 @default.
- W3100573144 countsByYear W31005731442015 @default.
- W3100573144 countsByYear W31005731442016 @default.
- W3100573144 countsByYear W31005731442017 @default.
- W3100573144 countsByYear W31005731442018 @default.
- W3100573144 countsByYear W31005731442019 @default.
- W3100573144 countsByYear W31005731442020 @default.
- W3100573144 countsByYear W31005731442021 @default.
- W3100573144 countsByYear W31005731442022 @default.
- W3100573144 countsByYear W31005731442023 @default.
- W3100573144 crossrefType "journal-article" @default.
- W3100573144 hasAuthorship W3100573144A5007598001 @default.
- W3100573144 hasAuthorship W3100573144A5008616086 @default.
- W3100573144 hasAuthorship W3100573144A5008740857 @default.