Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100623206> ?p ?o ?g. }
- W3100623206 endingPage "958" @default.
- W3100623206 startingPage "958" @default.
- W3100623206 abstract "In the last decade, machine learning has been widely used in different fields, especially because of its capacity to work with complex data. With the support of machine learning techniques, different studies have been using data-driven approaches to better understand some syndromes like mild cognitive impairment, Alzheimer's disease, schizophrenia, and chronic pain. Chronic pain is a complex disease that can recurrently be misdiagnosed due to its comorbidities with other syndromes with which it shares symptoms. Within that context, several studies have been suggesting different machine learning algorithms to classify or predict chronic pain conditions. Those algorithms were fed with a diversity of data types, from self-report data based on questionnaires to the most advanced brain imaging techniques. In this study, we assessed the sensitivity of different algorithms and datasets classifying chronic pain syndromes. Together with this assessment, we highlighted important methodological steps that should be taken into account when an experiment using machine learning is conducted. The best results were obtained by ensemble-based algorithms and the dataset containing the greatest diversity of information, resulting in area under the receiver operating curve (AUC) values of around 0.85. In addition, the performance of the algorithms is strongly related to the hyper-parameters. Thus, a good strategy for hyper-parameter optimization should be used to extract the most from the algorithm. These findings support the notion that machine learning can be a powerful tool to better understand chronic pain conditions." @default.
- W3100623206 created "2020-11-23" @default.
- W3100623206 creator A5018421564 @default.
- W3100623206 creator A5058030251 @default.
- W3100623206 creator A5081103359 @default.
- W3100623206 date "2020-11-17" @default.
- W3100623206 modified "2023-10-14" @default.
- W3100623206 title "Chronic Pain Diagnosis Using Machine Learning, Questionnaires, and QST: A Sensitivity Experiment" @default.
- W3100623206 cites W112355086 @default.
- W3100623206 cites W1541756193 @default.
- W3100623206 cites W1743359573 @default.
- W3100623206 cites W1748921979 @default.
- W3100623206 cites W1850301465 @default.
- W3100623206 cites W1946548095 @default.
- W3100623206 cites W1968664215 @default.
- W3100623206 cites W1970832311 @default.
- W3100623206 cites W1974102664 @default.
- W3100623206 cites W1981710544 @default.
- W3100623206 cites W1982105720 @default.
- W3100623206 cites W1991611223 @default.
- W3100623206 cites W1996918164 @default.
- W3100623206 cites W2001952147 @default.
- W3100623206 cites W2028714587 @default.
- W3100623206 cites W2031822844 @default.
- W3100623206 cites W2037314052 @default.
- W3100623206 cites W2041418763 @default.
- W3100623206 cites W2041680261 @default.
- W3100623206 cites W2048077997 @default.
- W3100623206 cites W2051865529 @default.
- W3100623206 cites W2062453895 @default.
- W3100623206 cites W2074692476 @default.
- W3100623206 cites W2082310821 @default.
- W3100623206 cites W2094492221 @default.
- W3100623206 cites W2095921734 @default.
- W3100623206 cites W2108712612 @default.
- W3100623206 cites W2121794484 @default.
- W3100623206 cites W2134843796 @default.
- W3100623206 cites W2137251661 @default.
- W3100623206 cites W2138870100 @default.
- W3100623206 cites W2143811409 @default.
- W3100623206 cites W2146481987 @default.
- W3100623206 cites W2158698691 @default.
- W3100623206 cites W2167613032 @default.
- W3100623206 cites W2253364553 @default.
- W3100623206 cites W2286885776 @default.
- W3100623206 cites W2300581296 @default.
- W3100623206 cites W2318488707 @default.
- W3100623206 cites W2345369601 @default.
- W3100623206 cites W2407507118 @default.
- W3100623206 cites W2418727604 @default.
- W3100623206 cites W2469458214 @default.
- W3100623206 cites W2509938835 @default.
- W3100623206 cites W2513400162 @default.
- W3100623206 cites W2513715080 @default.
- W3100623206 cites W2547809928 @default.
- W3100623206 cites W2562415598 @default.
- W3100623206 cites W2571379331 @default.
- W3100623206 cites W2582352836 @default.
- W3100623206 cites W2604867865 @default.
- W3100623206 cites W2729293203 @default.
- W3100623206 cites W2750268731 @default.
- W3100623206 cites W2757941888 @default.
- W3100623206 cites W2758525802 @default.
- W3100623206 cites W2766512312 @default.
- W3100623206 cites W2770260636 @default.
- W3100623206 cites W2770346636 @default.
- W3100623206 cites W2773399872 @default.
- W3100623206 cites W2780203776 @default.
- W3100623206 cites W2896813555 @default.
- W3100623206 cites W2900492222 @default.
- W3100623206 cites W2902994825 @default.
- W3100623206 cites W2905788968 @default.
- W3100623206 cites W2911964244 @default.
- W3100623206 cites W2921721793 @default.
- W3100623206 cites W2939401903 @default.
- W3100623206 cites W2942868138 @default.
- W3100623206 cites W2944592785 @default.
- W3100623206 cites W2946791797 @default.
- W3100623206 cites W2960981045 @default.
- W3100623206 cites W2969328612 @default.
- W3100623206 cites W2969480744 @default.
- W3100623206 cites W2969790209 @default.
- W3100623206 cites W2970847224 @default.
- W3100623206 cites W2971053934 @default.
- W3100623206 cites W2971502556 @default.
- W3100623206 cites W2985923507 @default.
- W3100623206 cites W2995462294 @default.
- W3100623206 cites W2995912853 @default.
- W3100623206 cites W3004608962 @default.
- W3100623206 cites W3010274200 @default.
- W3100623206 cites W3015066510 @default.
- W3100623206 cites W3016748229 @default.
- W3100623206 cites W4238425355 @default.
- W3100623206 doi "https://doi.org/10.3390/diagnostics10110958" @default.
- W3100623206 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7697204" @default.
- W3100623206 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33212774" @default.
- W3100623206 hasPublicationYear "2020" @default.
- W3100623206 type Work @default.