Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100623215> ?p ?o ?g. }
- W3100623215 endingPage "554" @default.
- W3100623215 startingPage "518" @default.
- W3100623215 abstract "Abstract Kolmogorov flow in two dimensions – the two-dimensional (2D) Navier–Stokes equations with a sinusoidal body force – is considered over extended periodic domains to reveal localised spatiotemporal complexity. The flow response mimics the forcing at small forcing amplitudes but beyond a critical value develops a long wavelength instability. The ensuing state is described by a Cahn–Hilliard-type equation and as a result coarsening dynamics is observed for random initial data. After further bifurcations, this regime gives way to multiple attractors, some of which possess spatially localised time dependence. Co-existence of such attractors in a large domain gives rise to interesting collisional dynamics which is captured by a system of 5 (1-space and 1-time) partial differential equations (PDEs) based on a long wavelength limit. The coarsening regime reinstates itself at yet higher forcing amplitudes in the sense that only longest-wavelength solutions remain attractors. Eventually, there is one global longest-wavelength attractor which possesses two localised chaotic regions – a kink and antikink – which connect two steady one-dimensional (1D) flow regions of essentially half the domain width each. The wealth of spatiotemporal complexity uncovered presents a bountiful arena in which to study the existence of simple invariant localised solutions which presumably underpin all of the observed behaviour." @default.
- W3100623215 created "2020-11-23" @default.
- W3100623215 creator A5010598422 @default.
- W3100623215 creator A5020365567 @default.
- W3100623215 date "2014-06-10" @default.
- W3100623215 modified "2023-10-01" @default.
- W3100623215 title "Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains" @default.
- W3100623215 cites W1969175928 @default.
- W3100623215 cites W1971896602 @default.
- W3100623215 cites W1973413061 @default.
- W3100623215 cites W1979473696 @default.
- W3100623215 cites W1981886084 @default.
- W3100623215 cites W1989653506 @default.
- W3100623215 cites W1994696114 @default.
- W3100623215 cites W2013912028 @default.
- W3100623215 cites W2014322399 @default.
- W3100623215 cites W2016143948 @default.
- W3100623215 cites W2020812933 @default.
- W3100623215 cites W2028096108 @default.
- W3100623215 cites W2030265216 @default.
- W3100623215 cites W2033200958 @default.
- W3100623215 cites W2040458022 @default.
- W3100623215 cites W2040994352 @default.
- W3100623215 cites W2042710054 @default.
- W3100623215 cites W2042802863 @default.
- W3100623215 cites W2044658345 @default.
- W3100623215 cites W2047924709 @default.
- W3100623215 cites W2050247880 @default.
- W3100623215 cites W2050391996 @default.
- W3100623215 cites W2050414905 @default.
- W3100623215 cites W2051850968 @default.
- W3100623215 cites W2053155959 @default.
- W3100623215 cites W2053688042 @default.
- W3100623215 cites W2056197615 @default.
- W3100623215 cites W2056981939 @default.
- W3100623215 cites W2072845694 @default.
- W3100623215 cites W2074573413 @default.
- W3100623215 cites W2078209199 @default.
- W3100623215 cites W2081182607 @default.
- W3100623215 cites W2082316787 @default.
- W3100623215 cites W2083978266 @default.
- W3100623215 cites W2085841126 @default.
- W3100623215 cites W2088328467 @default.
- W3100623215 cites W2089839857 @default.
- W3100623215 cites W2110144126 @default.
- W3100623215 cites W2110636390 @default.
- W3100623215 cites W2113375304 @default.
- W3100623215 cites W2128387473 @default.
- W3100623215 cites W2134504182 @default.
- W3100623215 cites W2144324889 @default.
- W3100623215 cites W2168861422 @default.
- W3100623215 cites W2316575469 @default.
- W3100623215 cites W2318480564 @default.
- W3100623215 cites W3099903987 @default.
- W3100623215 cites W3100227710 @default.
- W3100623215 cites W3100374166 @default.
- W3100623215 cites W3101182347 @default.
- W3100623215 cites W3102958063 @default.
- W3100623215 cites W3105882292 @default.
- W3100623215 cites W4229647965 @default.
- W3100623215 doi "https://doi.org/10.1017/jfm.2014.270" @default.
- W3100623215 hasPublicationYear "2014" @default.
- W3100623215 type Work @default.
- W3100623215 sameAs 3100623215 @default.
- W3100623215 citedByCount "49" @default.
- W3100623215 countsByYear W31006232152014 @default.
- W3100623215 countsByYear W31006232152015 @default.
- W3100623215 countsByYear W31006232152016 @default.
- W3100623215 countsByYear W31006232152017 @default.
- W3100623215 countsByYear W31006232152018 @default.
- W3100623215 countsByYear W31006232152019 @default.
- W3100623215 countsByYear W31006232152020 @default.
- W3100623215 countsByYear W31006232152021 @default.
- W3100623215 countsByYear W31006232152022 @default.
- W3100623215 countsByYear W31006232152023 @default.
- W3100623215 crossrefType "journal-article" @default.
- W3100623215 hasAuthorship W3100623215A5010598422 @default.
- W3100623215 hasAuthorship W3100623215A5020365567 @default.
- W3100623215 hasBestOaLocation W31006232152 @default.
- W3100623215 hasConcept C121332964 @default.
- W3100623215 hasConcept C121864883 @default.
- W3100623215 hasConcept C134306372 @default.
- W3100623215 hasConcept C154945302 @default.
- W3100623215 hasConcept C164380108 @default.
- W3100623215 hasConcept C180205008 @default.
- W3100623215 hasConcept C190470478 @default.
- W3100623215 hasConcept C197115733 @default.
- W3100623215 hasConcept C207821765 @default.
- W3100623215 hasConcept C2777052490 @default.
- W3100623215 hasConcept C33923547 @default.
- W3100623215 hasConcept C36503486 @default.
- W3100623215 hasConcept C37914503 @default.
- W3100623215 hasConcept C38349280 @default.
- W3100623215 hasConcept C41008148 @default.
- W3100623215 hasConcept C57879066 @default.
- W3100623215 hasConcept C62520636 @default.
- W3100623215 hasConcept C6260449 @default.
- W3100623215 hasConcept C74650414 @default.