Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100625762> ?p ?o ?g. }
- W3100625762 abstract "Abstract One major impediment to wider adoption of additive manufacturing (AM) is the presence of larger-than-expected shape deviations between an actual print and the intended design. Since large shape deviations/deformations lead to costly scrap and rework, effective learning from previous prints is critical to improve build accuracy of new products for cost reduction. However, products to be built often differ from the past, posing a significant challenge to achieving learning efficacy. The fundamental issue is how to learn a predictive model from a small set of training shapes to predict the accuracy of a new object. Recently an emerging body of work has attempted to generate parametric models through statistical learning to predict and compensate for shape deviations in AM. However, generating such models for 3D freeform shapes currently requires extensive human intervention. This work takes a completely different path by establishing a random forest model through learning from a small training set. One novelty of this approach is to extract features from training shapes/products represented by triangular meshes, as opposed to point cloud forms. This facilitates fast generation of predictive models for 3D freeform shapes with little human intervention in model specification. A real case study for a fused deposition modeling (FDM) process is conducted to validate model predictions. A practical compensation procedure based on the learned random forest model is also tested for a new part. The overall shape deviation is reduced by 44%, which shows a promising prospect for improving AM print accuracy." @default.
- W3100625762 created "2020-11-23" @default.
- W3100625762 creator A5069380555 @default.
- W3100625762 creator A5069791352 @default.
- W3100625762 creator A5072005677 @default.
- W3100625762 creator A5088889300 @default.
- W3100625762 date "2020-12-17" @default.
- W3100625762 modified "2023-09-30" @default.
- W3100625762 title "Geometric Accuracy Prediction and Improvement for Additive Manufacturing Using Triangular Mesh Shape Data" @default.
- W3100625762 cites W1752203938 @default.
- W3100625762 cites W1782215331 @default.
- W3100625762 cites W1800786660 @default.
- W3100625762 cites W1963729021 @default.
- W3100625762 cites W1965555277 @default.
- W3100625762 cites W1988334491 @default.
- W3100625762 cites W1991439497 @default.
- W3100625762 cites W1992372383 @default.
- W3100625762 cites W1992642990 @default.
- W3100625762 cites W2009729739 @default.
- W3100625762 cites W2014268383 @default.
- W3100625762 cites W2015954192 @default.
- W3100625762 cites W2024092653 @default.
- W3100625762 cites W2025309606 @default.
- W3100625762 cites W2029670310 @default.
- W3100625762 cites W2045270217 @default.
- W3100625762 cites W2054648002 @default.
- W3100625762 cites W2072719868 @default.
- W3100625762 cites W2093599714 @default.
- W3100625762 cites W2118020555 @default.
- W3100625762 cites W2131328806 @default.
- W3100625762 cites W2132481658 @default.
- W3100625762 cites W2153560452 @default.
- W3100625762 cites W2160443105 @default.
- W3100625762 cites W2191746746 @default.
- W3100625762 cites W2336917436 @default.
- W3100625762 cites W2345286239 @default.
- W3100625762 cites W2472068063 @default.
- W3100625762 cites W2529644203 @default.
- W3100625762 cites W2529908109 @default.
- W3100625762 cites W2601486059 @default.
- W3100625762 cites W2734975439 @default.
- W3100625762 cites W2765525389 @default.
- W3100625762 cites W2767778619 @default.
- W3100625762 cites W2787894218 @default.
- W3100625762 cites W2807604268 @default.
- W3100625762 cites W2890582415 @default.
- W3100625762 cites W2895008327 @default.
- W3100625762 cites W2901677415 @default.
- W3100625762 cites W2902489236 @default.
- W3100625762 cites W2911964244 @default.
- W3100625762 cites W2915627018 @default.
- W3100625762 cites W2990406412 @default.
- W3100625762 cites W3008706135 @default.
- W3100625762 cites W3017578948 @default.
- W3100625762 cites W3093168749 @default.
- W3100625762 cites W4244473079 @default.
- W3100625762 cites W4251022645 @default.
- W3100625762 doi "https://doi.org/10.1115/1.4049089" @default.
- W3100625762 hasPublicationYear "2020" @default.
- W3100625762 type Work @default.
- W3100625762 sameAs 3100625762 @default.
- W3100625762 citedByCount "12" @default.
- W3100625762 countsByYear W31006257622021 @default.
- W3100625762 countsByYear W31006257622022 @default.
- W3100625762 countsByYear W31006257622023 @default.
- W3100625762 crossrefType "journal-article" @default.
- W3100625762 hasAuthorship W3100625762A5069380555 @default.
- W3100625762 hasAuthorship W3100625762A5069791352 @default.
- W3100625762 hasAuthorship W3100625762A5072005677 @default.
- W3100625762 hasAuthorship W3100625762A5088889300 @default.
- W3100625762 hasConcept C105795698 @default.
- W3100625762 hasConcept C111919701 @default.
- W3100625762 hasConcept C117251300 @default.
- W3100625762 hasConcept C119857082 @default.
- W3100625762 hasConcept C121684516 @default.
- W3100625762 hasConcept C127413603 @default.
- W3100625762 hasConcept C131979681 @default.
- W3100625762 hasConcept C13736549 @default.
- W3100625762 hasConcept C154945302 @default.
- W3100625762 hasConcept C169258074 @default.
- W3100625762 hasConcept C177264268 @default.
- W3100625762 hasConcept C199360897 @default.
- W3100625762 hasConcept C31487907 @default.
- W3100625762 hasConcept C33923547 @default.
- W3100625762 hasConcept C41008148 @default.
- W3100625762 hasConcept C98045186 @default.
- W3100625762 hasConceptScore W3100625762C105795698 @default.
- W3100625762 hasConceptScore W3100625762C111919701 @default.
- W3100625762 hasConceptScore W3100625762C117251300 @default.
- W3100625762 hasConceptScore W3100625762C119857082 @default.
- W3100625762 hasConceptScore W3100625762C121684516 @default.
- W3100625762 hasConceptScore W3100625762C127413603 @default.
- W3100625762 hasConceptScore W3100625762C131979681 @default.
- W3100625762 hasConceptScore W3100625762C13736549 @default.
- W3100625762 hasConceptScore W3100625762C154945302 @default.
- W3100625762 hasConceptScore W3100625762C169258074 @default.
- W3100625762 hasConceptScore W3100625762C177264268 @default.
- W3100625762 hasConceptScore W3100625762C199360897 @default.
- W3100625762 hasConceptScore W3100625762C31487907 @default.
- W3100625762 hasConceptScore W3100625762C33923547 @default.