Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100633031> ?p ?o ?g. }
- W3100633031 endingPage "125725" @default.
- W3100633031 startingPage "125725" @default.
- W3100633031 abstract "The use of the nonstationary hydrological frequency analysis (HFA) has been prompted when nonstationarity is diagnosed in hydrometeorological data. However, the inconclusive identification of the physical process(es) and driver(s) behind the nonstationarity challenges the identification of an appropriate model structure, and consequently might hinder its reliable implementation. To date, no solid consensus on whether the nonstationary HFA is always superior to the stationary HFA has been reached. Therefore, this paper aimed to advance the understanding of the stationary and nonstationary HFAs under nonstationary scenarios by illustratively comparing their performance in real applications, and examining the effects of the nonstationarity on the stationary HFA through a simulation study, especially from the perspective of the uncertainty. The investigation of the effects of the nonstationarity on the stationary HFA was conducted in two fundamental nonstationary scenarios, namely temporal trends in the mean and variance, in which the degree of nonstationarity was quantifiable and known a priori. The HFAs were conducted using the Particle Filter, a Bayesian filtering technique which was recently employed in the stationary HFA and was further extended for the nonstationary HFA in this paper. The illustrative comparison did not demonstrate a consistent superiority of either HFA approach in terms of both fitting efficiency and uncertainty. This result thus implied that the stationarity HFA could outperform the nonstationary HFA in some cases. Besides, the simulation investigation of the stationary HFA revealed that the increase of nonstationarity degree would lead to the deterioration in the analysis accuracy and the elevation of uncertainty. The uncertainty in the stationary HFA was found to primarily originate from the nonstationarity, while the distribution selection would be the other but secondary source of uncertainty. The results from both the illustrative comparison and the simulation investigation suggested that whether the stationary or nonstationary HFA outperforms the other could be associated with the degree and pattern of nonstationarity. Therefore, it is recommended to consider them when developing a strategic framework to select an appropriate approach to deal with nonstationary hydrometeorological data." @default.
- W3100633031 created "2020-11-23" @default.
- W3100633031 creator A5026362430 @default.
- W3100633031 creator A5027555569 @default.
- W3100633031 creator A5074668321 @default.
- W3100633031 creator A5076770415 @default.
- W3100633031 date "2021-07-01" @default.
- W3100633031 modified "2023-10-02" @default.
- W3100633031 title "Stationary hydrological frequency analysis coupled with uncertainty assessment under nonstationary scenarios" @default.
- W3100633031 cites W1507764682 @default.
- W3100633031 cites W1554646359 @default.
- W3100633031 cites W1594170481 @default.
- W3100633031 cites W1594830375 @default.
- W3100633031 cites W1761851204 @default.
- W3100633031 cites W1765283343 @default.
- W3100633031 cites W1828563792 @default.
- W3100633031 cites W1862346859 @default.
- W3100633031 cites W1864311378 @default.
- W3100633031 cites W1964698767 @default.
- W3100633031 cites W1973996936 @default.
- W3100633031 cites W1976523210 @default.
- W3100633031 cites W1985870758 @default.
- W3100633031 cites W1995743207 @default.
- W3100633031 cites W2001250891 @default.
- W3100633031 cites W2005920009 @default.
- W3100633031 cites W2008892172 @default.
- W3100633031 cites W2013909639 @default.
- W3100633031 cites W2022787571 @default.
- W3100633031 cites W2028257469 @default.
- W3100633031 cites W2028267147 @default.
- W3100633031 cites W2029795748 @default.
- W3100633031 cites W2030654282 @default.
- W3100633031 cites W2048987877 @default.
- W3100633031 cites W2055336003 @default.
- W3100633031 cites W2057433062 @default.
- W3100633031 cites W2063398787 @default.
- W3100633031 cites W2080837230 @default.
- W3100633031 cites W2092265909 @default.
- W3100633031 cites W2098613108 @default.
- W3100633031 cites W2110260177 @default.
- W3100633031 cites W2120347659 @default.
- W3100633031 cites W2123634172 @default.
- W3100633031 cites W2142635246 @default.
- W3100633031 cites W2147686227 @default.
- W3100633031 cites W2148650246 @default.
- W3100633031 cites W2150951085 @default.
- W3100633031 cites W2154658453 @default.
- W3100633031 cites W2158825943 @default.
- W3100633031 cites W2159689047 @default.
- W3100633031 cites W2168175751 @default.
- W3100633031 cites W2171174555 @default.
- W3100633031 cites W2238144460 @default.
- W3100633031 cites W2254962493 @default.
- W3100633031 cites W2258020512 @default.
- W3100633031 cites W2345996020 @default.
- W3100633031 cites W2523723425 @default.
- W3100633031 cites W2551191081 @default.
- W3100633031 cites W2563253922 @default.
- W3100633031 cites W2563846140 @default.
- W3100633031 cites W2586322525 @default.
- W3100633031 cites W2590700275 @default.
- W3100633031 cites W2626664278 @default.
- W3100633031 cites W2730028507 @default.
- W3100633031 cites W2743641684 @default.
- W3100633031 cites W2746908980 @default.
- W3100633031 cites W2766778389 @default.
- W3100633031 cites W2769169336 @default.
- W3100633031 cites W2792010339 @default.
- W3100633031 cites W2801803914 @default.
- W3100633031 cites W2890873614 @default.
- W3100633031 cites W2897894096 @default.
- W3100633031 cites W2902941992 @default.
- W3100633031 cites W2932168008 @default.
- W3100633031 cites W2947766203 @default.
- W3100633031 cites W2948401774 @default.
- W3100633031 cites W2951814547 @default.
- W3100633031 cites W2978113453 @default.
- W3100633031 cites W3005758621 @default.
- W3100633031 cites W3023404659 @default.
- W3100633031 doi "https://doi.org/10.1016/j.jhydrol.2020.125725" @default.
- W3100633031 hasPublicationYear "2021" @default.
- W3100633031 type Work @default.
- W3100633031 sameAs 3100633031 @default.
- W3100633031 citedByCount "9" @default.
- W3100633031 countsByYear W31006330312020 @default.
- W3100633031 countsByYear W31006330312022 @default.
- W3100633031 countsByYear W31006330312023 @default.
- W3100633031 crossrefType "journal-article" @default.
- W3100633031 hasAuthorship W3100633031A5026362430 @default.
- W3100633031 hasAuthorship W3100633031A5027555569 @default.
- W3100633031 hasAuthorship W3100633031A5074668321 @default.
- W3100633031 hasAuthorship W3100633031A5076770415 @default.
- W3100633031 hasConcept C100725284 @default.
- W3100633031 hasConcept C105795698 @default.
- W3100633031 hasConcept C107054158 @default.
- W3100633031 hasConcept C107673813 @default.
- W3100633031 hasConcept C110405555 @default.
- W3100633031 hasConcept C111472728 @default.