Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100654551> ?p ?o ?g. }
- W3100654551 endingPage "A102" @default.
- W3100654551 startingPage "A102" @default.
- W3100654551 abstract "Context . Spectropolarimetric inversions are routinely used in the field of solar physics for the extraction of physical information from observations. The application to two-dimensional fields of view often requires the use of supercomputers with parallelized inversion codes. Even in this case, the computing time spent on the process is still very large. Aims . Our aim is to develop a new inversion code based on the application of convolutional neural networks that can quickly provide a three-dimensional cube of thermodynamical and magnetic properties from the interpreation of two-dimensional maps of Stokes profiles. Methods . We trained two different architectures of fully convolutional neural networks. To this end, we used the synthetic Stokes profiles obtained from two snapshots of three-dimensional magneto-hydrodynamic numerical simulations of different structures of the solar atmosphere. Results . We provide an extensive analysis of the new inversion technique, showing that it infers the thermodynamical and magnetic properties with a precision comparable to that of standard inversion techniques. However, it provides several key improvements: our method is around one million times faster, it returns a three-dimensional view of the physical properties of the region of interest in geometrical height, it provides quantities that cannot be obtained otherwise (pressure and Wilson depression) and the inferred properties are decontaminated from the blurring effect of instrumental point spread functions for free. The code, models, and data are all open source and available for free, to allow both evaluation and training." @default.
- W3100654551 created "2020-11-23" @default.
- W3100654551 creator A5026245103 @default.
- W3100654551 creator A5053220962 @default.
- W3100654551 date "2019-06-01" @default.
- W3100654551 modified "2023-10-17" @default.
- W3100654551 title "Stokes inversion based on convolutional neural networks" @default.
- W3100654551 cites W1519784798 @default.
- W3100654551 cites W1706405736 @default.
- W3100654551 cites W1965520413 @default.
- W3100654551 cites W1970446990 @default.
- W3100654551 cites W1973960549 @default.
- W3100654551 cites W2001948610 @default.
- W3100654551 cites W2009078656 @default.
- W3100654551 cites W2017326978 @default.
- W3100654551 cites W2018452929 @default.
- W3100654551 cites W2032791570 @default.
- W3100654551 cites W2032894621 @default.
- W3100654551 cites W2039557169 @default.
- W3100654551 cites W2043768633 @default.
- W3100654551 cites W2049729818 @default.
- W3100654551 cites W2060537842 @default.
- W3100654551 cites W2090248358 @default.
- W3100654551 cites W2100683261 @default.
- W3100654551 cites W2113753244 @default.
- W3100654551 cites W2140942353 @default.
- W3100654551 cites W2163314548 @default.
- W3100654551 cites W2164452299 @default.
- W3100654551 cites W2171062718 @default.
- W3100654551 cites W2551995089 @default.
- W3100654551 cites W2602452548 @default.
- W3100654551 cites W2808799744 @default.
- W3100654551 cites W2888024978 @default.
- W3100654551 cites W2889218131 @default.
- W3100654551 cites W2891029962 @default.
- W3100654551 cites W3098296022 @default.
- W3100654551 cites W3099469764 @default.
- W3100654551 cites W3101166507 @default.
- W3100654551 cites W3101416404 @default.
- W3100654551 cites W3102739005 @default.
- W3100654551 cites W3104408380 @default.
- W3100654551 cites W3104663965 @default.
- W3100654551 cites W3106145354 @default.
- W3100654551 cites W3106311337 @default.
- W3100654551 cites W3106476760 @default.
- W3100654551 cites W3110764629 @default.
- W3100654551 cites W4253065960 @default.
- W3100654551 cites W4288360377 @default.
- W3100654551 cites W4288360591 @default.
- W3100654551 cites W4298399776 @default.
- W3100654551 cites W4300090858 @default.
- W3100654551 doi "https://doi.org/10.1051/0004-6361/201935628" @default.
- W3100654551 hasPublicationYear "2019" @default.
- W3100654551 type Work @default.
- W3100654551 sameAs 3100654551 @default.
- W3100654551 citedByCount "36" @default.
- W3100654551 countsByYear W31006545512019 @default.
- W3100654551 countsByYear W31006545512020 @default.
- W3100654551 countsByYear W31006545512021 @default.
- W3100654551 countsByYear W31006545512022 @default.
- W3100654551 countsByYear W31006545512023 @default.
- W3100654551 crossrefType "journal-article" @default.
- W3100654551 hasAuthorship W3100654551A5026245103 @default.
- W3100654551 hasAuthorship W3100654551A5053220962 @default.
- W3100654551 hasBestOaLocation W31006545511 @default.
- W3100654551 hasConcept C109007969 @default.
- W3100654551 hasConcept C11413529 @default.
- W3100654551 hasConcept C121332964 @default.
- W3100654551 hasConcept C121864883 @default.
- W3100654551 hasConcept C134306372 @default.
- W3100654551 hasConcept C135252773 @default.
- W3100654551 hasConcept C151730666 @default.
- W3100654551 hasConcept C154945302 @default.
- W3100654551 hasConcept C177264268 @default.
- W3100654551 hasConcept C1893757 @default.
- W3100654551 hasConcept C199360897 @default.
- W3100654551 hasConcept C2776760102 @default.
- W3100654551 hasConcept C30475298 @default.
- W3100654551 hasConcept C33923547 @default.
- W3100654551 hasConcept C41008148 @default.
- W3100654551 hasConcept C459310 @default.
- W3100654551 hasConcept C81363708 @default.
- W3100654551 hasConcept C86803240 @default.
- W3100654551 hasConceptScore W3100654551C109007969 @default.
- W3100654551 hasConceptScore W3100654551C11413529 @default.
- W3100654551 hasConceptScore W3100654551C121332964 @default.
- W3100654551 hasConceptScore W3100654551C121864883 @default.
- W3100654551 hasConceptScore W3100654551C134306372 @default.
- W3100654551 hasConceptScore W3100654551C135252773 @default.
- W3100654551 hasConceptScore W3100654551C151730666 @default.
- W3100654551 hasConceptScore W3100654551C154945302 @default.
- W3100654551 hasConceptScore W3100654551C177264268 @default.
- W3100654551 hasConceptScore W3100654551C1893757 @default.
- W3100654551 hasConceptScore W3100654551C199360897 @default.
- W3100654551 hasConceptScore W3100654551C2776760102 @default.
- W3100654551 hasConceptScore W3100654551C30475298 @default.
- W3100654551 hasConceptScore W3100654551C33923547 @default.
- W3100654551 hasConceptScore W3100654551C41008148 @default.